\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10 - 2D and 3D Linear Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CGAL::orientation()

See Also
CGAL::collinear()
CGAL::left_turn()
CGAL::right_turn()

Functions

template<typename Kernel >
Orientation CGAL::orientation (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r)
 returns CGAL::LEFT_TURN, if r lies to the left of the oriented line l defined by p and q, returns CGAL::RIGHT_TURN if r lies to the right of l, and returns CGAL::COLLINEAR if r lies on l.
 
template<typename Kernel >
Orientation CGAL::orientation (const CGAL::Vector_2< Kernel > &u, const CGAL::Vector_2< Kernel > &v)
 returns CGAL::LEFT_TURN if u and v form a left turn, returns CGAL::RIGHT_TURN if u and v form a right turn, and returns CGAL::COLLINEAR if u and v are collinear.
 
template<typename Kernel >
Orientation CGAL::orientation (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s)
 returns CGAL::POSITIVE, if s lies on the positive side of the oriented plane h defined by p, q, and r, returns CGAL::NEGATIVE if s lies on the negative side of h, and returns CGAL::COPLANAR if s lies on h.
 
template<typename Kernel >
Orientation CGAL::orientation (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v, const CGAL::Vector_3< Kernel > &w)
 returns CGAL::NEGATIVE if u, v and w are negatively oriented, CGAL::POSITIVE if u, v and w are positively oriented, and CGAL::COPLANAR if u, v and w are coplanar.