\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10 - CGAL and Solvers
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Class and Concept List
Here is the list of all concepts and classes of this package. Classes are inside the namespace CGAL. Concepts are in the global namespace.
[detail level 12]
oNCGAL
|oCDiagonalize_traitsThe class Diagonalize_traits provides an internal implementation for the diagonalization of Variance-Covariance Matrices
|oCEigen_diagonalize_traitsThe class Eigen_diagonalize_traits provides an interface to the diagonalization of covariance matrices of Eigen
|oCEigen_sparse_matrixThe class Eigen_sparse_matrix is a wrapper around Eigen matrix type Eigen::SparseMatrix that represents general matrices, be they symmetric or not
|oCEigen_sparse_symmetric_matrixThe class Eigen_sparse_symmetric_matrix is a wrapper around Eigen matrix type Eigen::SparseMatrix
|oCEigen_matrixThe class Eigen_matrix is a wrapper around Eigen matrix type Eigen::Matrix
|oCEigen_solver_traitsThe class Eigen_solver_traits provides an interface to the sparse solvers of Eigen
|oCEigen_svdThe class Eigen_svd provides an algorithm to solve in the least square sense a linear system with a singular value decomposition using Eigen
|\CEigen_vectorThe class Eigen_vector is a wrapper around Eigen vector type , which is a simple array of numbers
oCDiagonalizeTraitsConcept providing functions to extract eigenvectors and eigenvalues from covariance matrices represented by an array a, using symmetric diagonalization. For example, a matrix of dimension 3 is defined as follows:
\( \begin{bmatrix} a[0] & a[1] & a[2] \\ a[1] & a[3] & a[4] \\ a[2] & a[4] & a[5] \\ \end{bmatrix}\)
oCNormalEquationSparseLinearAlgebraTraits_dConcept describing the set of requirements for solving the normal equation \( A^t A X = A^t B \), \( A \) being a matrix, \( At \) its transpose matrix, \( B \) and \( X \) being two vectors
oCSparseLinearAlgebraTraits_dThe concept SparseLinearAlgebraTraits_d is used to solve sparse linear systems A \( \times \) X = B
|oCMatrixSparseLinearAlgebraTraits_d::Matrix is a concept of a sparse matrix class
|\CVectorSparseLinearAlgebraTraits_d::Vector is a concept of a vector that can be multiplied by a sparse matrix
oCSparseLinearAlgebraWithFactorTraits_dConcept describing the set of requirements for a direct sparse linear system solver with factorization. A model of this concept stores the left-hand matrix (denoted \( A \)) and provides an additional factorization method to solve the system for different right-hand vectors
\CSvdTraitsThe concept SvdTraits describes the linear algebra types and algorithms needed to solve in the least square sense a linear system with a singular value decomposition
 oCMatrixConcept of matrix type used by the concept SvdTraits
 \CVectorConcept of vector type used by the concept SvdTraits