\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11.2 - Geometric Object Generators
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CGAL::Random_points_on_segment_3< Point_3, Creator > Class Template Reference

#include <CGAL/point_generators_3.h>

Definition

The class Random_points_on_segment_3 is an input iterator creating points uniformly distributed on a segment.

The default Creator is Creator_uniform_3<Kernel_traits<Point_3>Kernel::RT,Point_3>.

Is Model Of:

InputIterator

PointGenerator

See Also
CGAL::cpp11::copy_n()
CGAL::Counting_iterator
std::random_shuffle

Types

typedef std::input_iterator_tag iterator_category
 
typedef Point_3 value_type
 
typedef std::ptrdiff_t difference_type
 
typedef const Point_3pointer
 
typedef const Point_3reference
 
 Random_points_on_segment_3 (const Point_3 &p, const Point_3 &q, Random &rnd=get_default_random())
 creates an input iterator g generating points of type Point_3 uniformly distributed on the segment from \( p\) to \( q\) (excluding \( q\)), i.e. \( *g == (1-\lambda)\, p + \lambda q\) where \( 0 \le\lambda< 1\). More...
 

Constructor & Destructor Documentation

template<typename Point_3 , typename Creator >
CGAL::Random_points_on_segment_3< Point_3, Creator >::Random_points_on_segment_3 ( const Point_3 p,
const Point_3 q,
Random rnd = get_default_random() 
)

creates an input iterator g generating points of type Point_3 uniformly distributed on the segment from \( p\) to \( q\) (excluding \( q\)), i.e. \( *g == (1-\lambda)\, p + \lambda q\) where \( 0 \le\lambda< 1\).

A single random number is needed from rnd for each point. The expressions to_double(p.x()), to_double(p.y()), and to_double(p.z()) must result in the respective double representation of the coordinates of \( p\), and similarly for \( q\).