CGAL 4.11.2 - 2D and 3D Linear Geometry Kernel
|
Namespaces | |
cpp11 | |
Scale_space_reconstruction_3 | |
Shape_detection_3 | |
Surface_mesh_parameterization | |
Classes | |
class | Cartesian_d |
class | Epick_d |
class | Homogeneous_d |
class | Aff_transformation_d |
class | Direction_d |
class | Hyperplane_d |
class | Iso_box_d |
class | Line_d |
class | Point_d |
class | Ray_d |
class | Segment_d |
class | Sphere_d |
class | Vector_d |
class | Linear_algebraCd |
class | Linear_algebraHd |
class | Polygon_2 |
class | Polygon_with_holes_2 |
class | General_polygon_with_holes_2 |
class | Convex_hull_constructive_traits_2 |
class | Convex_hull_traits_2 |
class | Constrained_Delaunay_triangulation_2 |
struct | No_intersection_tag |
struct | Exact_intersections_tag |
struct | Exact_predicates_tag |
class | Constrained_triangulation_2 |
class | Constrained_triangulation_face_base_2 |
class | Constrained_triangulation_plus_2 |
class | Delaunay_triangulation_2 |
class | Regular_triangulation_2 |
class | Regular_triangulation_euclidean_traits_2 |
class | Regular_triangulation_face_base_2 |
class | Regular_triangulation_filtered_traits_2 |
class | Regular_triangulation_vertex_base_2 |
class | Triangulation_2 |
class | Triangulation_cw_ccw_2 |
class | Triangulation_euclidean_traits_2 |
class | Triangulation_face_base_2 |
class | Triangulation_face_base_with_info_2 |
class | Triangulation_hierarchy_2 |
class | Triangulation_hierarchy_vertex_base_2 |
class | Triangulation_vertex_base_2 |
class | Triangulation_vertex_base_with_info_2 |
class | Weighted_point |
class | Protect_FPU_rounding |
class | Set_ieee_double_precision |
class | Gmpfi |
class | Gmpfr |
class | Gmpq |
class | Gmpz |
class | Gmpzf |
class | Interval_nt |
class | Lazy_exact_nt |
class | MP_Float |
class | Mpzf |
class | NT_converter |
class | Number_type_checker |
class | Quotient |
class | Rational_traits |
class | Root_of_traits |
class | Sqrt_extension |
class | Is_valid |
class | Max |
class | Min |
class | Algebraic_structure_traits |
class | Euclidean_ring_tag |
class | Field_tag |
class | Field_with_kth_root_tag |
class | Field_with_root_of_tag |
class | Field_with_sqrt_tag |
class | Integral_domain_tag |
class | Integral_domain_without_division_tag |
class | Unique_factorization_domain_tag |
class | Coercion_traits |
class | Fraction_traits |
class | Real_embeddable_traits |
class | Algebraic_kernel_for_circles_2_2 |
class | Circular_arc_2 |
class | Circular_arc_point_2 |
class | Circular_kernel_2 |
class | Exact_circular_kernel_2 |
class | Line_arc_2 |
class | Polynomial_1_2 |
class | Polynomial_for_circles_2_2 |
class | Root_for_circles_2_2 |
class | Algebraic_kernel_for_spheres_2_3 |
class | Circular_arc_3 |
class | Circular_arc_point_3 |
class | Exact_spherical_kernel_3 |
class | Line_arc_3 |
class | Polynomial_1_3 |
class | Polynomial_for_spheres_2_3 |
class | Polynomials_for_lines_3 |
class | Root_for_spheres_2_3 |
class | Spherical_kernel_3 |
struct | Construct_array |
class | CC_safe_handle |
class | Compact_container_base |
class | Compact_container |
class | Compact_container_traits |
class | Compact |
class | Fast |
class | Concurrent_compact_container_traits |
class | Concurrent_compact_container |
class | Default |
class | Fourtuple |
class | Cast_function_object |
class | Compare_to_less |
class | Creator_1 |
class | Creator_2 |
class | Creator_3 |
class | Creator_4 |
class | Creator_5 |
class | Creator_uniform_2 |
class | Creator_uniform_3 |
class | Creator_uniform_4 |
class | Creator_uniform_5 |
class | Creator_uniform_6 |
class | Creator_uniform_7 |
class | Creator_uniform_8 |
class | Creator_uniform_9 |
class | Creator_uniform_d |
class | Dereference |
class | Get_address |
class | Identity |
class | Project_facet |
class | Project_next |
class | Project_next_opposite |
class | Project_normal |
class | Project_opposite_prev |
class | Project_plane |
class | Project_point |
class | Project_prev |
class | Project_vertex |
class | In_place_list_base |
class | In_place_list |
class | Const_oneset_iterator |
class | Counting_iterator |
class | Dispatch_or_drop_output_iterator |
class | Dispatch_output_iterator |
class | Emptyset_iterator |
class | Filter_iterator |
class | Insert_iterator |
class | Inverse_index |
class | Join_input_iterator_1 |
class | Join_input_iterator_2 |
class | Join_input_iterator_3 |
class | N_step_adaptor |
class | Oneset_iterator |
class | Random_access_adaptor |
class | Random_access_value_adaptor |
class | Iterator_range |
class | Location_policy |
class | Multiset |
class | Object |
class | Sixtuple |
class | Spatial_lock_grid_3 |
class | Boolean_tag |
struct | Null_functor |
struct | Sequential_tag |
struct | Parallel_tag |
class | Null_tag |
class | Threetuple |
class | Twotuple |
class | Uncertain |
class | Quadruple |
class | Triple |
struct | value_type_traits |
struct | value_type_traits< std::back_insert_iterator< Container > > |
struct | value_type_traits< std::insert_iterator< Container > > |
struct | value_type_traits< std::front_insert_iterator< Container > > |
class | Polyhedron_3 |
class | Polyhedron_incremental_builder_3 |
class | Polyhedron_items_3 |
class | Polyhedron_min_items_3 |
class | Polyhedron_traits_3 |
class | Polyhedron_traits_with_normals_3 |
class | Aff_transformation_2 |
The class Aff_transformation_2 represents two-dimensional affine transformations. More... | |
class | Aff_transformation_3 |
The class Aff_transformation_3 represents three-dimensional affine transformations. More... | |
class | Identity_transformation |
Tag class for affine transformations. More... | |
class | Reflection |
Tag class for affine transformations. More... | |
class | Rotation |
Tag class for affine transformations. More... | |
class | Scaling |
Tag class for affine transformations. More... | |
class | Translation |
Tag class for affine transformations. More... | |
class | Bbox_2 |
An object b of the class Bbox_2 is a bounding box in the two-dimensional Euclidean plane \( \E^2\). More... | |
class | Bbox_3 |
An object b of the class Bbox_3 is a bounding box in the three-dimensional Euclidean space \( \E^3\). More... | |
class | Cartesian |
A model for Kernel that uses Cartesian coordinates to represent the geometric objects. More... | |
class | Cartesian_converter |
Cartesian_converter converts objects from the kernel traits K1 to the kernel traits K2 using NTConverter to do the conversion. More... | |
class | Circle_2 |
An object c of type Circle_2 is a circle in the two-dimensional Euclidean plane \( \E^2\). More... | |
class | Circle_3 |
An object c of type Circle_3 is a circle in the three-dimensional Euclidean space \( \E^3\). More... | |
class | Ambient_dimension |
The class Ambient_dimension allows to retrieve the dimension of the ambient space of a type T in a kernel K . More... | |
class | Dimension_tag |
An object of the class Dimension_tag is an empty object which can be used for dispatching functions based on the dimension of an object, as provided by the dim parameter. More... | |
class | Dynamic_dimension_tag |
An object of the class Dynamic_dimension_tag is an empty object which can be used for dispatching functions based on the dimension of an object. More... | |
class | Feature_dimension |
The class Feature_dimension allows to retrieve the geometric dimension of a type T in a kernel K . More... | |
class | Direction_2 |
An object d of the class Direction_2 is a vector in the two-dimensional vector space \( \mathbb{R}^2\) where we forget about its length. More... | |
class | Direction_3 |
An object of the class Direction_3 is a vector in the three-dimensional vector space \( \mathbb{R}^3\) where we forget about their length. More... | |
class | Exact_predicates_exact_constructions_kernel |
A typedef to a kernel which has the following properties: More... | |
class | Exact_predicates_exact_constructions_kernel_with_kth_root |
A typedef to a kernel which has the following properties: More... | |
class | Exact_predicates_exact_constructions_kernel_with_root_of |
A typedef to a kernel which has the following properties: More... | |
class | Exact_predicates_exact_constructions_kernel_with_sqrt |
A typedef to a kernel which has the following properties: More... | |
class | Exact_predicates_inexact_constructions_kernel |
A typedef to a kernel which has the following properties: More... | |
class | Filtered_kernel_adaptor |
Filtered_kernel_adaptor is a kernel that uses a filtering technique to obtain a kernel with exact and efficient predicate functors. More... | |
class | Filtered_kernel |
Filtered_kernel is a kernel that uses a filtering technique based on interval arithmetic form to achieve exact and efficient predicates. More... | |
class | Filtered_predicate |
Filtered_predicate is an adaptor for predicate function objects that allows one to produce efficient and exact predicates. More... | |
class | Homogeneous |
A model for a Kernel using homogeneous coordinates to represent the geometric objects. More... | |
class | Homogeneous_converter |
Homogeneous_converter converts objects from the kernel traits K1 to the kernel traits K2 . More... | |
class | Iso_cuboid_3 |
An object c of the data type Iso_cuboid_3 is a cuboid in the Euclidean space \( \E^3\) with edges parallel to the \( x\), \( y\) and \( z\) axis of the coordinate system. More... | |
class | Iso_rectangle_2 |
An object r of the data type Iso_rectangle_2 is a rectangle in the Euclidean plane \( \E^2\) with sides parallel to the \( x\) and \( y\) axis of the coordinate system. More... | |
class | Kernel_traits |
The class Kernel_traits provides access to the kernel model to which the argument type T belongs. More... | |
class | Line_2 |
An object l of the data type Line_2 is a directed straight line in the two-dimensional Euclidean plane \( \E^2\). More... | |
class | Line_3 |
An object l of the data type Line_3 is a directed straight line in the three-dimensional Euclidean space \( \E^3\). More... | |
class | Null_vector |
CGAL defines a symbolic constant NULL_VECTOR to construct zero length vectors. More... | |
class | Origin |
CGAL defines a symbolic constant ORIGIN which denotes the point at the origin. More... | |
class | Plane_3 |
An object h of the data type Plane_3 is an oriented plane in the three-dimensional Euclidean space \( \E^3\). More... | |
class | Point_2 |
An object p of the class Point_2 is a point in the two-dimensional Euclidean plane \( \E^2\). More... | |
class | Point_3 |
An object of the class Point_3 is a point in the three-dimensional Euclidean space \( \E^3\). More... | |
class | Projection_traits_xy_3 |
The class Projection_traits_xy_3 is an adapter to apply 2D algorithms to the projections of 3D data on the xy -plane. More... | |
class | Projection_traits_xz_3 |
The class Projection_traits_xz_3 is an adapter to apply 2D algorithms to the projections of 3D data on the xz -plane. More... | |
class | Projection_traits_yz_3 |
The class Projection_traits_yz_3 is an adapter to apply 2D algorithms to the projections of 3D data on the yz -plane. More... | |
class | Ray_2 |
An object r of the data type Ray_2 is a directed straight ray in the two-dimensional Euclidean plane \( \E^2\). More... | |
class | Ray_3 |
An object r of the data type Ray_3 is a directed straight ray in the three-dimensional Euclidean space \( \E^3\). More... | |
class | Segment_2 |
An object s of the data type Segment_2 is a directed straight line segment in the two-dimensional Euclidean plane \( \E^2\), i.e. a straight line segment \( [p,q]\) connecting two points \( p,q \in \mathbb{R}^2\). More... | |
class | Segment_3 |
An object s of the data type Segment_3 is a directed straight line segment in the three-dimensional Euclidean space \( \E^3\), that is a straight line segment \( [p,q]\) connecting two points \( p,q \in \R^3\). More... | |
class | Simple_cartesian |
A model for a Kernel using Cartesian coordinates to represent the geometric objects. More... | |
class | Simple_homogeneous |
A model for a Kernel using homogeneous coordinates to represent the geometric objects. More... | |
class | Sphere_3 |
An object of type Sphere_3 is a sphere in the three-dimensional Euclidean space \( \E^3\). More... | |
class | Tetrahedron_3 |
An object t of the class Tetrahedron_3 is an oriented tetrahedron in the three-dimensional Euclidean space \( \E^3\). More... | |
class | Triangle_2 |
An object t of the class Triangle_2 is a triangle in the two-dimensional Euclidean plane \( \E^2\). More... | |
class | Triangle_3 |
An object t of the class Triangle_3 is a triangle in the three-dimensional Euclidean space \( \E^3\). More... | |
class | Vector_2 |
An object v of the class Vector_2 is a vector in the two-dimensional vector space \( \mathbb{R}^2\). More... | |
class | Vector_3 |
An object of the class Vector_3 is a vector in the three-dimensional vector space \( \mathbb{R}^3\). More... | |
class | Weighted_point_2 |
An object of the class Weighted_point_2 is a tuple of a two-dimensional point and a scalar weight. More... | |
class | Weighted_point_3 |
An object of the class Weighted_point_3 is a tuple of a three-dimensional point and a scalar weight. More... | |
Typedefs | |
typedef Sign | Orientation |
Enumerations | |
enum | Angle { OBTUSE, RIGHT, ACUTE } |
enum | Bounded_side { ON_UNBOUNDED_SIDE, ON_BOUNDARY, ON_BOUNDED_SIDE } |
enum | Comparison_result { SMALLER, EQUAL, LARGER } |
enum | Sign { NEGATIVE, ZERO, POSITIVE } |
enum | Oriented_side { ON_NEGATIVE_SIDE, ON_ORIENTED_BOUNDARY, ON_POSITIVE_SIDE } |
enum | Box_parameter_space_2 { LEFT_BOUNDARY = 0, RIGHT_BOUNDARY, BOTTOM_BOUNDARY, TOP_BOUNDARY, INTERIOR, EXTERIOR } |
Functions | |
template<typename T , typename U > | |
T | enum_cast (const U &u) |
converts between the various enums provided by the CGAL kernel. More... | |
Oriented_side | opposite (const Oriented_side &o) |
returns the opposite side (for example CGAL::ON_POSITIVE_SIDE if o ==CGAL::ON_NEGATIVE_SIDE ), or CGAL::ON_ORIENTED_BOUNDARY if o ==CGAL::ON_ORIENTED_BOUNDARY . | |
Bounded_side | opposite (const Bounded_side &o) |
returns the opposite side (for example CGAL::ON_BOUNDED_SIDE if o ==CGAL::ON_UNBOUNDED_SIDE ), or returns CGAL::ON_BOUNDARY if o ==CGAL::ON_BOUNDARY . | |
bool | do_intersect (Type1< Kernel > obj1, Type2< Kernel > obj2) |
checks whether obj1 and obj2 intersect. More... | |
template<typename Kernel > | |
cpp11::result_of < Kernel::Intersect_23(Type1, Type2)>::type | intersection (Type1< Kernel > obj1, Type2< Kernel > obj2) |
Two objects obj1 and obj2 intersect if there is a point p that is part of both obj1 and obj2 . More... | |
template<typename Kernel > | |
boost::optional < boost::variant< Point_3, Line_3, Plane_3 > > | intersection (const Plane_3< Kernel > &pl1, const Plane_3< Kernel > &pl2, const Plane_3< Kernel > &pl3) |
returns the intersection of 3 planes, which can be a point, a line, a plane, or empty. | |
template<typename Kernel > | |
Angle | angle (const CGAL::Vector_2< Kernel > &u, const CGAL::Vector_2< Kernel > &v) |
returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors u and v . | |
template<typename Kernel > | |
Angle | angle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the three points p , q , r (q being the vertex of the angle). More... | |
template<typename Kernel > | |
Angle | angle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s) |
returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq , rs . More... | |
template<typename Kernel > | |
Angle | angle (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v) |
returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors u and v . | |
template<typename Kernel > | |
Angle | angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the three points p , q , r (q being the vertex of the angle). | |
template<typename Kernel > | |
Angle | angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq , rs . More... | |
template<typename Kernel > | |
Angle | angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Vector_3< Kernel > &v) |
returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the normal of the triangle pqr and the vector v . | |
template<typename Kernel > | |
Kernel::FT | approximate_dihedral_angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
returns an approximation of the signed dihedral angle in the tetrahedron pqrs of edge pq . More... | |
template<typename Kernel > | |
Kernel::FT | area (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns the signed area of the triangle defined by the points p , q and r . | |
template<typename Kernel > | |
bool | are_ordered_along_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns true , iff the three points are collinear and q lies between p and r . More... | |
template<typename Kernel > | |
bool | are_ordered_along_line (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
returns true , iff the three points are collinear and q lies between p and r . More... | |
template<typename Kernel > | |
bool | are_strictly_ordered_along_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns true , iff the three points are collinear and q lies strictly between p and r . More... | |
template<typename Kernel > | |
bool | are_strictly_ordered_along_line (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
returns true , iff the three points are collinear and q lies strictly between p and r . More... | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2) |
compute the barycenter of the points p1 and p2 with corresponding weights w1 and 1-w1 . | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2, const Kernel::FT &w2) |
compute the barycenter of the points p1 and p2 with corresponding weights w1 and w2 . More... | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_2< Kernel > &p3) |
compute the barycenter of the points p1 , p2 and p3 with corresponding weights w1 , w2 and 1-w1-w2 . | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_2< Kernel > &p3, const Kernel::FT &w3) |
compute the barycenter of the points p1 , p2 and p3 with corresponding weights w1 , w2 and w3 . More... | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_2< Kernel > &p3, const Kernel::FT &w3, const CGAL::Point_2< Kernel > &p4) |
compute the barycenter of the points p1 , p2 , p3 and p4 with corresponding weights w1 , w2 , w3 and 1-w1-w2-w3 . | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_2< Kernel > &p3, const Kernel::FT &w3, const CGAL::Point_2< Kernel > &p4, const Kernel::FT &w4) |
compute the barycenter of the points p1 , p2 , p3 and p4 with corresponding weights w1 , w2 , w3 and w4 . More... | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2) |
compute the barycenter of the points p1 and p2 with corresponding weights w1 and 1-w1 . | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2, const Kernel::FT &w2) |
compute the barycenter of the points p1 and p2 with corresponding weights w1 and w2 . More... | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_3< Kernel > &p3) |
compute the barycenter of the points p1 , p2 and p3 with corresponding weights w1 , w2 and 1-w1-w2 . | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_3< Kernel > &p3, const Kernel::FT &w3) |
compute the barycenter of the points p1 , p2 and p3 with corresponding weights w1 , w2 and w3 . More... | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_3< Kernel > &p3, const Kernel::FT &w3, const CGAL::Point_3< Kernel > &p4) |
compute the barycenter of the points p1 , p2 , p3 and p4 with corresponding weights w1 , w2 , w3 and 1-w1-w2-w3 . | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_3< Kernel > &p3, const Kernel::FT &w3, const CGAL::Point_3< Kernel > &p4, const Kernel::FT &w4) |
compute the barycenter of the points p1 , p2 , p3 and p4 with corresponding weights w1 , w2 , w3 and w4 . More... | |
template<typename Kernel > | |
CGAL::Line_2< Kernel > | bisector (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
constructs the bisector line of the two points p and q . More... | |
template<typename Kernel > | |
CGAL::Line_2< Kernel > | bisector (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2) |
constructs the bisector of the two lines l1 and l2 . More... | |
template<typename Kernel > | |
CGAL::Plane_3< Kernel > | bisector (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
constructs the bisector plane of the two points p and q . More... | |
template<typename Kernel > | |
CGAL::Plane_3< Kernel > | bisector (const CGAL::Plane_3< Kernel > &h1, const CGAL::Plane_3< Kernel > &h2) |
constructs the bisector of the two planes h1 and h2 . More... | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | centroid (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
compute the centroid of the points p , q , and r . | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | centroid (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s) |
compute the centroid of the points p , q , r , and s . | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | centroid (const CGAL::Triangle_2< Kernel > &t) |
compute the centroid of the triangle t . | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | centroid (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
compute the centroid of the points p , q , and r . | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | centroid (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
compute the centroid of the points p , q , r , and s . | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | centroid (const CGAL::Triangle_3< Kernel > &t) |
compute the centroid of the triangle t . | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | centroid (const CGAL::Tetrahedron_3< Kernel > &t) |
compute the centroid of the tetrahedron t . | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | circumcenter (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
compute the center of the smallest circle passing through the points p and q . More... | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | circumcenter (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
compute the center of the circle passing through the points p , q , and r . More... | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | circumcenter (const CGAL::Triangle_2< Kernel > &t) |
compute the center of the circle passing through the vertices of t . More... | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | circumcenter (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
compute the center of the smallest sphere passing through the points p and q . More... | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | circumcenter (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
compute the center of the circle passing through the points p , q , and r . More... | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | circumcenter (const CGAL::Triangle_3< Kernel > &t) |
compute the center of the circle passing through the vertices of t . More... | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | circumcenter (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
compute the center of the sphere passing through the points p , q , r , and s . More... | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | circumcenter (const CGAL::Tetrahedron_3< Kernel > &t) |
compute the center of the sphere passing through the vertices of t . More... | |
template<typename Kernel > | |
bool | collinear_are_ordered_along_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns true , iff q lies between p and r . More... | |
template<typename Kernel > | |
bool | collinear_are_ordered_along_line (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
returns true , iff q lies between p and r . More... | |
template<typename Kernel > | |
bool | collinear_are_strictly_ordered_along_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns true , iff q lies strictly between p and r . More... | |
template<typename Kernel > | |
bool | collinear_are_strictly_ordered_along_line (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
returns true , iff q lies strictly between p and r . More... | |
template<typename Kernel > | |
bool | collinear (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns true , iff p , q , and r are collinear. | |
template<typename Kernel > | |
bool | collinear (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
returns true , iff p , q , and r are collinear. | |
template<typename Kernel > | |
Comparison_result | compare_dihedral_angle (const CGAL::Point_3< Kernel > &a1, const CGAL::Point_3< Kernel > &b1, const CGAL::Point_3< Kernel > &c1, const CGAL::Point_3< Kernel > &d1, const Kernel::FT &cosine) |
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the dihedral angle, in \( [0, \pi]\), of the tetrahedron (a1, b1, c1, d1) at the edge (a1, b1) , and \( \theta_2\) is the angle in \( [0, \pi]\) such that \( cos(\theta_2) = cosine\). More... | |
template<typename Kernel > | |
Comparison_result | compare_dihedral_angle (const CGAL::Point_3< Kernel > &a1, const CGAL::Point_3< Kernel > &b1, const CGAL::Point_3< Kernel > &c1, const CGAL::Point_3< Kernel > &d1, const CGAL::Point_3< Kernel > &a2, const CGAL::Point_3< Kernel > &b2, const CGAL::Point_3< Kernel > &c2, const CGAL::Point_3< Kernel > &d2) |
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_i\) is the dihedral angle in the tetrahedron (a_i, b_i, c_i, d_i) at the edge (a_i, b_i) . More... | |
template<typename Kernel > | |
Comparison_result | compare_dihedral_angle (const CGAL::Vector_3< Kernel > &u1, const CGAL::Vector_3< Kernel > &v1, const CGAL::Vector_3< Kernel > &w1, const Kernel::FT &cosine) |
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the dihedral angle, in \( [0, \pi]\), between the vectorial planes defined by (u_1, v_1) and (u_1, w_1) , and \( \theta_2\) is the angle in \( [0, \pi]\) such that \( cos(\theta_2) = cosine\). More... | |
template<typename Kernel > | |
Comparison_result | compare_dihedral_angle (const CGAL::Vector_3< Kernel > &u1, const CGAL::Vector_3< Kernel > &v1, const CGAL::Vector_3< Kernel > &w1, const CGAL::Vector_3< Kernel > &u2, const CGAL::Vector_3< Kernel > &v2, const CGAL::Vector_3< Kernel > &w2) |
compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_i\) is the dihedral angle between the vectorial planes defined by (u_i, v_i) and (u_i, w_i) . More... | |
template<typename Kernel > | |
Comparison_result | compare_distance_to_point (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
compares the distances of points q and r to point p . More... | |
template<typename Kernel > | |
Comparison_result | compare_distance_to_point (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
compares the distances of points q and r to point p . More... | |
template<typename Kernel > | |
Comparison_result | compare_lexicographically (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
Compares the Cartesian coordinates of points p and q lexicographically in \( xy\) order: first \( x\)-coordinates are compared, if they are equal, \( y\)-coordinates are compared. More... | |
template<typename Kernel > | |
Comparison_result | compare_lexicographically (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
Compares the Cartesian coordinates of points p and q lexicographically in \( xyz\) order: first \( x\)-coordinates are compared, if they are equal, \( y\)-coordinates are compared, and if both \( x\)- and \( y\)- coordinate are equal, \( z\)-coordinates are compared. More... | |
template<typename Kernel > | |
Comparison_result | compare_signed_distance_to_line (const CGAL::Line_2< Kernel > &l, const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
returns CGAL::LARGER iff the signed distance of p and l is larger than the signed distance of q and l , CGAL::SMALLER , iff it is smaller, and CGAL::EQUAL iff both are equal. | |
template<typename Kernel > | |
Comparison_result | compare_signed_distance_to_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s) |
returns CGAL::LARGER iff the signed distance of r and l is larger than the signed distance of s and l , CGAL::SMALLER , iff it is smaller, and CGAL::EQUAL iff both are equal, where l is the directed line through p and q . | |
template<typename Kernel > | |
Comparison_result | compare_signed_distance_to_plane (const CGAL::Plane_3< Kernel > &h, const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
returns CGAL::LARGER iff the signed distance of p and h is larger than the signed distance of q and h , CGAL::SMALLER , iff it is smaller, and CGAL::EQUAL iff both are equal. | |
template<typename Kernel > | |
Comparison_result | compare_signed_distance_to_plane (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const CGAL::Point_3< Kernel > &t) |
returns CGAL::LARGER iff the signed distance of s and h is larger than the signed distance of t and h , CGAL::SMALLER , iff it is smaller, and CGAL::EQUAL iff both are equal, where h is the oriented plane through p , q and r . | |
template<typename Kernel > | |
Comparison_result | compare_slope (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2) |
compares the slopes of the lines l1 and l2 | |
template<typename Kernel > | |
Comparison_result | compare_slope (const CGAL::Segment_2< Kernel > &s1, const CGAL::Segment_2< Kernel > &s2) |
compares the slopes of the segments s1 and s2 , where the slope is the variation of the y -coordinate from the left to the right endpoint of the segments. | |
template<typename Kernel > | |
Comparison_result | compare_slope (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
compares the slopes of the segments (p,q) and (r,s) , where the slope is the variation of the z -coordinate from the first to the second point of the segment divided by the length of the segment. | |
template<typename Kernel > | |
Comparison_result | compare_squared_distance (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const typename Kernel::FT &d2) |
compares the squared distance of points p and q to d2 . | |
template<typename Kernel > | |
Comparison_result | compare_squared_distance (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const typename Kernel::FT &d2) |
compares the squared distance of points p and q to d2 . | |
template<typename Kernel > | |
Comparison_result | compare_squared_radius (const CGAL::Point_3< Kernel > &p, const typename Kernel::FT &sr) |
compares the squared radius of the sphere of radius 0 centered at p to sr . More... | |
template<typename Kernel > | |
Comparison_result | compare_squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const typename Kernel::FT &sr) |
compares the squared radius of the sphere defined by the points p and q to sr . | |
template<typename Kernel > | |
Comparison_result | compare_squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const typename Kernel::FT &sr) |
compares the squared radius of the sphere defined by the points p , q , and r to sr . | |
template<typename Kernel > | |
Comparison_result | compare_squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const typename Kernel::FT &sr) |
compares the squared radius of the sphere defined by the points p , q , r , and r to sr . | |
template<typename Kernel > | |
Comparison_result | compare_x (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
compares the \( x\)-coordinates of p and q . | |
template<typename Kernel > | |
Comparison_result | compare_x (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
compares the \( x\)-coordinates of p and q . | |
template<typename Kernel > | |
Comparison_result | compare_x (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2) |
compares the \( x\)-coordinates of p and the intersection of lines l1 and l2 . More... | |
template<typename Kernel > | |
Comparison_result | compare_x (const CGAL::Line_2< Kernel > &l, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
compares the \( x\)-coordinates of the intersection of line l with line h1 and with line h2 . More... | |
template<typename Kernel > | |
Comparison_result | compare_x (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
compares the \( x\)-coordinates of the intersection of lines l1 and l2 and the intersection of lines h1 and h2 . More... | |
template<typename CircularKernel > | |
Comparison_result | compare_x (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Circular_arc_point_2< CircularKernel > &q) |
compares the \( x\)-coordinates of p and q . | |
template<typename CircularKernel > | |
Comparison_result | compare_x (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Point_2< CircularKernel > &q) |
compares the \( x\)-coordinates of p and q . | |
template<typename SphericalKernel > | |
Comparison_result | compare_x (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q) |
compares the \( x\)-coordinates of p and q . | |
template<typename SphericalKernel > | |
Comparison_result | compare_x (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Point_3< SphericalKernel > &q) |
compares the \( x\)-coordinates of p and q . | |
template<typename Kernel > | |
Comparison_result | compare_xy (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
Compares the Cartesian coordinates of points p and q lexicographically in \( xy\) order: first \( x\)-coordinates are compared, if they are equal, \( y\)-coordinates are compared. | |
template<typename Kernel > | |
Comparison_result | compare_xy (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
Compares the Cartesian coordinates of points p and q lexicographically in \( xy\) order: first \( x\)-coordinates are compared, if they are equal, \( y\)-coordinates are compared. | |
template<typename CircularKernel > | |
Comparison_result | compare_xy (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Circular_arc_point_2< CircularKernel > &q) |
Compares the \( x\) and \( y\) Cartesian coordinates of points p and q lexicographically. | |
template<typename CircularKernel > | |
Comparison_result | compare_xy (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Point_2< CircularKernel > &q) |
Compares the \( x\) and \( y\) Cartesian coordinates of points p and q lexicographically. | |
template<typename SphericalKernel > | |
Comparison_result | compare_xy (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q) |
Compares the \( x\) and \( y\) Cartesian coordinates of points p and q lexicographically. | |
template<typename SphericalKernel > | |
Comparison_result | compare_xy (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Point_3< SphericalKernel > &q) |
Compares the \( x\) and \( y\) Cartesian coordinates of points p and q lexicographically. | |
template<typename Kernel > | |
Comparison_result | compare_x_at_y (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &h) |
compares the \( x\)-coordinates of p and the horizontal projection of p on h . More... | |
template<typename Kernel > | |
Comparison_result | compare_x_at_y (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
This function compares the \( x\)-coordinates of the horizontal projection of p on h1 and on h2 . More... | |
template<typename Kernel > | |
Comparison_result | compare_x_at_y (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h) |
Let p be the intersection of lines l1 and l2 . More... | |
template<typename Kernel > | |
Comparison_result | compare_x_at_y (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
Let p be the intersection of lines l1 and l2 . More... | |
template<typename Kernel > | |
Comparison_result | compare_y_at_x (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &h) |
compares the \( y\)-coordinates of p and the vertical projection of p on h . More... | |
template<typename Kernel > | |
Comparison_result | compare_y_at_x (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
compares the \( y\)-coordinates of the vertical projection of p on h1 and on h2 . More... | |
template<typename Kernel > | |
Comparison_result | compare_y_at_x (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h) |
Let p be the intersection of lines l1 and l2 . More... | |
template<typename Kernel > | |
Comparison_result | compare_y_at_x (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
Let p be the intersection of lines l1 and l2 . More... | |
template<typename Kernel > | |
Comparison_result | compare_y_at_x (const CGAL::Point_2< Kernel > &p, const CGAL::Segment_2< Kernel > &s) |
compares the \( y\)-coordinates of p and the vertical projection of p on s . More... | |
template<typename Kernel > | |
Comparison_result | compare_y_at_x (const CGAL::Point_2< Kernel > &p, const CGAL::Segment_2< Kernel > &s1, const CGAL::Segment_2< Kernel > &s2) |
compares the \( y\)-coordinates of the vertical projection of p on s1 and on s2 . More... | |
template<typename Kernel > | |
Comparison_result | compare_y (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
compares Cartesian \( y\)-coordinates of p and q . | |
template<typename Kernel > | |
Comparison_result | compare_y (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
compares Cartesian \( y\)-coordinates of p and q . | |
template<typename Kernel > | |
Comparison_result | compare_y (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2) |
compares the \( y\)-coordinates of p and the intersection of lines l1 and l2 . More... | |
template<typename Kernel > | |
Comparison_result | compare_y (const CGAL::Line_2< Kernel > &l, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
compares the \( y\)-coordinates of the intersection of line l with line h1 and with line h2 . More... | |
template<typename Kernel > | |
Comparison_result | compare_y (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
compares the \( y\)-coordinates of the intersection of lines l1 and l2 and the intersection of lines h1 and h2 . More... | |
template<typename CircularKernel > | |
Comparison_result | compare_y (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Circular_arc_point_2< CircularKernel > &q) |
compares the \( y\)-coordinates of p and q . | |
template<typename CircularKernel > | |
Comparison_result | compare_y (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Point_2< CircularKernel > &q) |
compares the \( y\)-coordinates of p and q . | |
template<typename SphericalKernel > | |
Comparison_result | compare_y (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q) |
compares the \( y\)-coordinates of p and q . | |
template<typename SphericalKernel > | |
Comparison_result | compare_y (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Point_3< SphericalKernel > &q) |
compares the \( y\)-coordinates of p and q . | |
template<typename Kernel > | |
Comparison_result | compare_xyz (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
Compares the Cartesian coordinates of points p and q lexicographically in \( xyz\) order: first \( x\)-coordinates are compared, if they are equal, \( y\)-coordinates are compared, and if both \( x\)- and \( y\)- coordinate are equal, \( z\)-coordinates are compared. | |
template<typename SphericalKernel > | |
Comparison_result | compare_xyz (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q) |
Compares the Cartesian coordinates of points p and q lexicographically. | |
template<typename SphericalKernel > | |
Comparison_result | compare_xyz (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Point_3< SphericalKernel > &q) |
Compares the Cartesian coordinates of points p and q lexicographically. | |
template<typename Kernel > | |
Comparison_result | compare_z (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
compares the \( z\)-coordinates of p and q . | |
template<typename SphericalKernel > | |
Comparison_result | compare_z (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q) |
compares the \( z\)-coordinates of p and q . | |
template<typename SphericalKernel > | |
Comparison_result | compare_z (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Point_3< SphericalKernel > &q) |
compares the \( z\)-coordinates of p and q . | |
template<typename Kernel > | |
Comparison_result | compare_yx (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
Compares the Cartesian coordinates of points p and q lexicographically in \( yx\) order: first \( y\)-coordinates are compared, if they are equal, \( x\)-coordinates are compared. | |
template<typename Kernel > | |
bool | coplanar (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
returns true , if p , q , r , and s are coplanar. | |
template<typename Kernel > | |
Orientation | coplanar_orientation (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
Let P be the plane defined by the points p , q , and r . More... | |
template<typename Kernel > | |
Orientation | coplanar_orientation (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
If p,q,r are collinear, then CGAL::COLLINEAR is returned. More... | |
template<typename Kernel > | |
Bounded_side | coplanar_side_of_bounded_circle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
returns the bounded side of the circle defined by p , q , and r on which s lies. More... | |
template<typename Kernel > | |
CGAL::Vector_3< Kernel > | cross_product (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v) |
returns the cross product of u and v . | |
template<typename Kernel > | |
Kernel::FT | determinant (const CGAL::Vector_2< Kernel > &v, const CGAL::Vector_2< Kernel > &w) |
returns the determinant of v and w . | |
template<typename Kernel > | |
Kernel::FT | determinant (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v, const CGAL::Vector_3< Kernel > &w) |
returns the determinant of u , v and w . | |
template<typename Kernel > | |
CGAL::Line_3< Kernel > | equidistant_line (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
constructs the line which is at the same distance from the three points p , q and r . More... | |
template<typename Kernel > | |
bool | has_larger_distance_to_point (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns true iff the distance between q and p is larger than the distance between r and p . | |
template<typename Kernel > | |
bool | has_larger_distance_to_point (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
returns true iff the distance between q and p is larger than the distance between r and p . | |
template<typename Kernel > | |
bool | has_larger_signed_distance_to_line (const CGAL::Line_2< Kernel > &l, const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
returns true iff the signed distance of p and l is larger than the signed distance of q and l . | |
template<typename Kernel > | |
bool | has_larger_signed_distance_to_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s) |
returns true iff the signed distance of r and l is larger than the signed distance of s and l , where l is the directed line through points p and q . | |
template<typename Kernel > | |
bool | has_larger_signed_distance_to_plane (const CGAL::Plane_3< Kernel > &h, const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
returns true iff the signed distance of p and h is larger than the signed distance of q and h . | |
template<typename Kernel > | |
bool | has_larger_signed_distance_to_plane (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const CGAL::Point_3< Kernel > &t) |
returns true iff the signed distance of s and h is larger than the signed distance of t and h , where h is the oriented plane through p , q and r . | |
template<typename Kernel > | |
bool | has_smaller_distance_to_point (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns true iff the distance between q and p is smaller than the distance between r and p . | |
template<typename Kernel > | |
bool | has_smaller_distance_to_point (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
returns true iff the distance between q and p is smaller than the distance between r and p . | |
template<typename Kernel > | |
bool | has_smaller_signed_distance_to_line (const CGAL::Line_2< Kernel > &l, const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
returns true iff the signed distance of p and l is smaller than the signed distance of q and l . | |
template<typename Kernel > | |
bool | has_smaller_signed_distance_to_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s) |
returns true iff the signed distance of r and l is smaller than the signed distance of s and l , where l is the oriented line through p and q . | |
template<typename Kernel > | |
bool | has_smaller_signed_distance_to_plane (const CGAL::Plane_3< Kernel > &h, const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
returns true iff the signed distance of p and h is smaller than the signed distance of q and h . | |
template<typename Kernel > | |
bool | has_smaller_signed_distance_to_plane (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const CGAL::Point_3< Kernel > &t) |
returns true iff the signed distance of p and h is smaller than the signed distance of q and h , where h is the oriented plane through p , q and r . | |
template<typename Kernel > | |
Kernel::FT | l_infinity_distance (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
returns the distance between p and q in the L-infinity metric. | |
template<typename Kernel > | |
Kernel::FT | l_infinity_distance (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
returns the distance between p and q in the L-infinity metric. | |
template<typename Kernel > | |
bool | left_turn (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns true iff p , q , and r form a left turn. | |
template<typename Kernel > | |
bool | lexicographically_xy_larger (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
returns true iff p is lexicographically larger than q with respect to \( xy\) order. | |
template<typename Kernel > | |
bool | lexicographically_xy_larger_or_equal (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
returns true iff p is lexicographically not smaller than q with respect to \( xy\) order. | |
template<typename Kernel > | |
bool | lexicographically_xy_smaller (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
returns true iff p is lexicographically smaller than q with respect to \( xy\) order. | |
template<typename Kernel > | |
bool | lexicographically_xy_smaller_or_equal (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
returns true iff p is lexicographically not larger than q with respect to \( xy\) order. | |
template<typename Kernel > | |
bool | lexicographically_xyz_smaller (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
returns true iff p is lexicographically smaller than q with respect to \( xyz\) order. | |
template<typename Kernel > | |
bool | lexicographically_xyz_smaller_or_equal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
returns true iff p is lexicographically not larger than q with respect to \( xyz\) order. | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | max_vertex (const CGAL::Iso_rectangle_2< Kernel > &ir) |
computes the vertex with the lexicographically largest coordinates of the iso rectangle ir . | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | max_vertex (const CGAL::Iso_cuboid_3< Kernel > &ic) |
computes the vertex with the lexicographically largest coordinates of the iso cuboid ic . | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | midpoint (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
computes the midpoint of the segment pq . | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | midpoint (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
computes the midpoint of the segment pq . | |
template<typename Kernel > | |
CGAL::Point_2< Kernel > | min_vertex (const CGAL::Iso_rectangle_2< Kernel > &ir) |
computes the vertex with the lexicographically smallest coordinates of the iso rectangle ir . | |
template<typename Kernel > | |
CGAL::Point_3< Kernel > | min_vertex (const CGAL::Iso_cuboid_3< Kernel > &ic) |
computes the vertex with the lexicographically smallest coordinates of the iso cuboid ic . | |
template<typename Kernel > | |
CGAL::Vector_3< Kernel > | normal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
computes the normal vector for the vectors q-p and r-p . More... | |
template<typename Kernel > | |
Orientation | orientation (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns CGAL::LEFT_TURN , if r lies to the left of the oriented line l defined by p and q , returns CGAL::RIGHT_TURN if r lies to the right of l , and returns CGAL::COLLINEAR if r lies on l . | |
template<typename Kernel > | |
Orientation | orientation (const CGAL::Vector_2< Kernel > &u, const CGAL::Vector_2< Kernel > &v) |
returns CGAL::LEFT_TURN if u and v form a left turn, returns CGAL::RIGHT_TURN if u and v form a right turn, and returns CGAL::COLLINEAR if u and v are collinear. | |
template<typename Kernel > | |
Orientation | orientation (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
returns CGAL::POSITIVE , if s lies on the positive side of the oriented plane h defined by p , q , and r , returns CGAL::NEGATIVE if s lies on the negative side of h , and returns CGAL::COPLANAR if s lies on h . | |
template<typename Kernel > | |
Orientation | orientation (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v, const CGAL::Vector_3< Kernel > &w) |
returns CGAL::NEGATIVE if u , v and w are negatively oriented, CGAL::POSITIVE if u , v and w are positively oriented, and CGAL::COPLANAR if u , v and w are coplanar. | |
template<typename Kernel > | |
CGAL::Vector_3< Kernel > | orthogonal_vector (const CGAL::Plane_3< Kernel > &p) |
computes an orthogonal vector of the plane p , which is directed to the positive side of this plane. | |
template<typename Kernel > | |
CGAL::Vector_3< Kernel > | orthogonal_vector (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
computes an orthogonal vector of the plane defined by p , q and r , which is directed to the positive side of this plane. | |
template<typename Kernel > | |
bool | parallel (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2) |
returns true , if l1 and l2 are parallel or if one of those (or both) is degenerate. | |
template<typename Kernel > | |
bool | parallel (const CGAL::Ray_2< Kernel > &r1, const CGAL::Ray_2< Kernel > &r2) |
returns true , if r1 and r2 are parallel or if one of those (or both) is degenerate. | |
template<typename Kernel > | |
bool | parallel (const CGAL::Segment_2< Kernel > &s1, const CGAL::Segment_2< Kernel > &s2) |
returns true , if s1 and s2 are parallel or if one of those (or both) is degenerate. | |
template<typename Kernel > | |
bool | parallel (const CGAL::Line_3< Kernel > &l1, const CGAL::Line_3< Kernel > &l2) |
returns true , if l1 and l2 are parallel or if one of those (or both) is degenerate. | |
template<typename Kernel > | |
bool | parallel (const CGAL::Plane_3< Kernel > &h1, const CGAL::Plane_3< Kernel > &h2) |
returns true , if h1 and h2 are parallel or if one of those (or both) is degenerate. | |
template<typename Kernel > | |
bool | parallel (const CGAL::Ray_3< Kernel > &r1, const CGAL::Ray_3< Kernel > &r2) |
returns true , if r1 and r2 are parallel or if one of those (or both) is degenerate. | |
template<typename Kernel > | |
bool | parallel (const CGAL::Segment_3< Kernel > &s1, const CGAL::Segment_3< Kernel > &s2) |
returns true , if s1 and s2 are parallel or if one of those (or both) is degenerate. | |
CGAL::Plane_3< Kernel > | radical_plane (const CGAL::Sphere_3< Kernel > &s1, const CGAL::Sphere_3< Kernel > &s2) |
returns the radical plane of the two spheres. More... | |
template<typename Kernel > | |
CGAL::Line_2< Kernel > | radical_line (const CGAL::Circle_2< Kernel > &c1, const CGAL::Circle_2< Kernel > &c2) |
returns the radical line of the two circles. More... | |
template<typename Kernel > | |
bool | right_turn (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns true iff p , q , and r form a right turn. | |
template<typename Kernel > | |
Kernel::FT | scalar_product (const CGAL::Vector_2< Kernel > &u, const CGAL::Vector_2< Kernel > &v) |
returns the scalar product of u and v . | |
template<typename Kernel > | |
Kernel::FT | scalar_product (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v) |
returns the scalar product of u and v . | |
template<typename Kernel > | |
Bounded_side | side_of_bounded_circle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &t) |
returns the relative position of point t to the circle defined by p , q and r . More... | |
template<typename Kernel > | |
Bounded_side | side_of_bounded_circle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &t) |
returns the position of the point t relative to the circle that has pq as its diameter. | |
template<typename Kernel > | |
Bounded_side | side_of_bounded_sphere (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const CGAL::Point_3< Kernel > &t) |
returns the relative position of point t to the sphere defined by p , q , r , and s . More... | |
template<typename Kernel > | |
Bounded_side | side_of_bounded_sphere (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &t) |
returns the position of the point t relative to the sphere passing through p , q , and r and whose center is in the plane defined by these three points. | |
template<typename Kernel > | |
Bounded_side | side_of_bounded_sphere (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &t) |
returns the position of the point t relative to the sphere that has pq as its diameter. | |
template<typename Kernel > | |
Oriented_side | side_of_oriented_circle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &test) |
returns the relative position of point test to the oriented circle defined by p , q and r . More... | |
template<typename Kernel > | |
Oriented_side | side_of_oriented_sphere (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const CGAL::Point_3< Kernel > &test) |
returns the relative position of point test to the oriented sphere defined by p , q , r and s . More... | |
template<typename Kernel > | |
Kernel::FT | squared_area (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
returns the squared area of the triangle defined by the points p , q and r . | |
template<typename Kernel > | |
FT | squared_radius (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
compute the squared radius of the circle passing through the points p , q , and r . More... | |
template<typename Kernel > | |
FT | squared_radius (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
compute the squared radius of the smallest circle passing through p , and q , i.e. one fourth of the squared distance between p and q . | |
template<typename Kernel > | |
FT | squared_radius (const CGAL::Point_2< Kernel > &p) |
compute the squared radius of the smallest circle passing through p , i.e. \( 0\). | |
template<typename Kernel > | |
FT | squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
compute the squared radius of the sphere passing through the points p , q , r and s . More... | |
template<typename Kernel > | |
FT | squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
compute the squared radius of the sphere passing through the points p , q , and r and whose center is in the same plane as those three points. | |
template<typename Kernel > | |
FT | squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
compute the squared radius of the smallest circle passing through p , and q , i.e. one fourth of the squared distance between p and q . | |
template<typename Kernel > | |
FT | squared_radius (const CGAL::Point_3< Kernel > &p) |
compute the squared radius of the smallest circle passing through p , i.e. \( 0\). | |
CGAL::Vector_3< Kernel > | unit_normal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
computes the unit normal vector for the vectors q-p and r-p . More... | |
template<typename Kernel > | |
Kernel::FT | volume (const CGAL::Point_3< Kernel > &p0, const CGAL::Point_3< Kernel > &p1, const CGAL::Point_3< Kernel > &p2, const CGAL::Point_3< Kernel > &p3) |
Computes the signed volume of the tetrahedron defined by the four points p0 , p1 , p2 and p3 . | |
template<typename Kernel > | |
bool | x_equal (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
returns true , iff p and q have the same x -coordinate. | |
template<typename Kernel > | |
bool | x_equal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
returns true , iff p and q have the same x -coordinate. | |
template<typename Kernel > | |
bool | y_equal (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
returns true , iff p and q have the same y -coordinate. | |
template<typename Kernel > | |
bool | y_equal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
returns true , iff p and q have the same y -coordinate. | |
template<typename Kernel > | |
bool | z_equal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
returns true , iff p and q have the same z -coordinate. | |
template<RingNumberType > | |
void | rational_rotation_approximation (const RingNumberType &dirx, const RingNumberType &diry, RingNumberType &sin_num, RingNumberType &cos_num, RingNumberType &denom, const RingNumberType &eps_num, const RingNumberType &eps_den) |
computes integers sin_num , cos_num and denom , such that sin_num /denom approximates the sine of direction \( (\)dirx ,diry \( )\). More... | |
template<typename Kernel > | |
Kernel::FT | squared_distance (Type1< Kernel > obj1, Type2< Kernel > obj2) |
computes the square of the Euclidean distance between two geometric objects. More... | |
Variables | |
const CGAL::Orientation | CLOCKWISE = NEGATIVE |
const CGAL::Orientation | COUNTERCLOCKWISE = POSITIVE |
const CGAL::Orientation | COLLINEAR = ZERO |
const CGAL::Orientation | LEFT_TURN = POSITIVE |
const CGAL::Orientation | RIGHT_TURN = NEGATIVE |
const CGAL::Orientation | COPLANAR = ZERO |
const CGAL::Orientation | DEGENERATE = ZERO |
const CGAL::Null_vector | NULL_VECTOR |
A symbolic constant used to construct zero length vectors. More... | |
const CGAL::Origin | ORIGIN |
A symbolic constant which denotes the point at the origin. More... | |
template<typename RT > | |
Point_2< Homogeneous< RT > > | cartesian_to_homogeneous (const Point_2< Cartesian< RT > > &cp) |
Functions to convert between Cartesian and homogeneous kernels. More... | |
template<typename RT > | |
Point_3< Homogeneous< RT > > | cartesian_to_homogeneous (const Point_3< Cartesian< RT > > &cp) |
converts 3D point cp with Cartesian representation into a 3D point with homogeneous representation with the same number type. | |
template<typename FT > | |
Point_2< Cartesian< FT > > | homogeneous_to_cartesian (const Point_2< Homogeneous< FT > > &hp) |
converts 2D point hp with homogeneous representation into a 2D point with Cartesian representation with the same number type. | |
template<typename FT > | |
Point_3< Cartesian< FT > > | homogeneous_to_cartesian (const Point_3< Homogeneous< FT > > &hp) |
converts 3D point hp with homogeneous representation into a 3D point with Cartesian representation with the same number type. | |
template<typename RT > | |
Point_2< Cartesian< Quotient < RT > > > | homogeneous_to_quotient_cartesian (const Point_2< Homogeneous< RT > > &hp) |
converts the 2D point hp with homogeneous representation with number type RT into a 2D point with Cartesian representation with number type Quotient<RT> . | |
template<typename RT > | |
Point_3< Cartesian< Quotient < RT > > > | homogeneous_to_quotient_cartesian (const Point_3< Homogeneous< RT > > &hp) |
converts the 3D point hp with homogeneous representation with number type RT into a 3D point with Cartesian representation with number type Quotient<RT> . | |
template<typename RT > | |
Point_2< Homogeneous< RT > > | quotient_cartesian_to_homogeneous (const Point_2< Cartesian< Quotient< RT > > > &cp) |
converts 2D point cp with Cartesian representation with number type Quotient<RT> into a 2D point with homogeneous representation with number type RT . | |
template<typename RT > | |
Point_3< Homogeneous< RT > > | quotient_cartesian_to_homogeneous (const Point_3< Cartesian< Quotient< RT > > > &cp) |
converts 3D point cp with Cartesian representation with number type Quotient<RT> into a 3D point with homogeneous representation with number type RT . | |
bool | do_intersect (Type1< CircularKernel > obj1, Type2< CircularKernel > obj2) |
checks whether obj1 and obj2 intersect. More... | |
template<typename Type1 , typename Type2 , typename OutputIterator > | |
OutputIterator | intersection (const Type1 &obj1, const Type2 &obj2, OutputIterator intersections) |
Constructs the intersection elements between the two input objects and stores them in the OutputIterator in lexicographic order, where both, Type1 and Type2 , can be either. More... | |
With the 2D Circular Kernel | |
See 2D Circular Geometry Kernel. #include <CGAL/global_functions_circular_kernel_2.h>
| |
template<typename CircularKernel > | |
Comparison_result | compare_y_at_x (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Circular_arc_2< CircularKernel > &a) |
Same as above, for a point and a circular arc. | |
template<typename CircularKernel > | |
Comparison_result | compare_y_at_x (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Line_arc_2< CircularKernel > &a) |
Same as above, for a point and a line segment. | |
bool | do_intersect (Type1< SphericalKernel > obj1, Type2< SphericalKernel > obj2) |
checks whether obj1 and obj2 intersect. More... | |
bool | do_intersect (Type1< SphericalKernel > obj1, Type2< SphericalKernel > obj2, Type3< SphericalKernel > obj3) |
checks whether obj1 , obj2 and obj3 intersect. More... | |
template<typename SphericalType1 , typename SphericalType1 , typename OutputIterator > | |
OutputIterator | intersection (const SphericalType1 &obj1, const SphericalType2 &obj2, OutputIterator intersections) |
Copies in the output iterator the intersection elements between the two objects. More... | |
template<typename Type1 , typename Type2 , typename Type3 , typename OutputIterator > | |
OutputIterator | intersection (const Type1 &obj1, const Type2 &obj2, const Type3 &obj3, OutputIterator intersections) |
Copies in the output iterator the intersection elements between the three objects. More... | |