\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11.2 - Polynomial
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
PolynomialTraits_d::Scale Concept Reference

Definition

Given a constant \( c\) this AdaptableBinaryFunction scales a PolynomialTraits_d::Polynomial_d \( p\) with respect to one variable, that is, it computes \( p(c\cdot x)\).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate polynomial in one specific variable.

Refines:

AdaptableBinaryFunction

CopyConstructible

DefaultConstructible

See Also
Polynomial_d
PolynomialTraits_d

Types

typedef
PolynomialTraits_d::Polynomial_d 
result_type
 
typedef
PolynomialTraits_d::Polynomial_d 
first_argument_type
 
typedef
PolynomialTraits_d::Innermost_coefficient_type 
second_argument_type
 

Operations

result_type operator() (first_argument_type p, second_argument_type c)
 Returns \( p(c\cdot x)\), with respect to the outermost variable.
 
result_type operator() (first_argument_type p, second_argument_type c, int i)
 Same as first operator but for variable \( x_i\). More...
 

Member Function Documentation

result_type PolynomialTraits_d::Scale::operator() ( first_argument_type  p,
second_argument_type  c,
int  i 
)

Same as first operator but for variable \( x_i\).

Precondition
\( 0 \leq i < d\).