\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11.2 - Polynomial
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor Concept Reference

Definition

This AdaptableFunctor computes a square-free factorization up to a constant factor (utcf) of a PolynomialTraits_d::Polynomial_d.

A polynomial \( p\) is factored into square-free and pairwise coprime non-constant factors \( g_i\) with multiplicities \( m_i\), such that \( a \cdot p = g_1^{m_1} \cdot ... \cdot g_n^{m_n}\), where \( a\) is some constant factor.

The pairs \( (g_i,m_i)\) are written into the given output iterator.

The constant factor \( a\) is not computed.

This functor is well defined even though PolynomialTraits_d::Innermost_coefficient_type may not be a UniqueFactorizationDomain.

Refines:

Assignable

CopyConstructible

DefaultConstructible

See Also
Polynomial_d
PolynomialTraits_d
PolynomialTraits_d::SquareFreeFactorize

Operations

template<class OutputIterator >
OutputIterator operator() (PolynomialTraits_d::Polynomial_d p, OutputIterator it)
 Computes the square-free factorization of \( p\) and returns the past-the-end iterator of the written range. More...
 

Member Function Documentation

template<class OutputIterator >
OutputIterator PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor::operator() ( PolynomialTraits_d::Polynomial_d  p,
OutputIterator  it 
)

Computes the square-free factorization of \( p\) and returns the past-the-end iterator of the written range.

Precondition
std::iterator_traits< OutputIterator >::value_type must be constructible from std::pair<PolynomialTraits_d::Polynomial_d,int>.