CGAL 4.11.3 - Algebraic Foundations
|
AdaptableBinaryFunction
that computes whether the first argument is a square. If the first argument is a square the second argument, which is taken by reference, contains the square root. Otherwise, the content of the second argument is undefined.
A ring element \( x\) is said to be a square iff there exists a ring element \( y\) such that \( x= y*y\). In case the ring is a UniqueFactorizationDomain
, \( y\) is uniquely defined up to multiplication by units.
AlgebraicStructureTraits
Types | |
typedef unspecified_type | result_type |
Is AlgebraicStructureTraits::Boolean . | |
typedef unspecified_type | first_argument |
Is AlgebraicStructureTraits::Type . | |
typedef unspecified_type | second_argument |
Is AlgebraicStructureTraits::Type& . | |
Operations | |
result_type | operator() (first_argument_type x, second_argument_type y) |
returns true in case \( x\) is a square, i.e. \( x = y*y\). More... | |
result_type | operator() (first_argument_type x) |
returns true in case \( x\) is a square. | |
result_type AlgebraicStructureTraits_::IsSquare::operator() | ( | first_argument_type | x, |
second_argument_type | y | ||
) |
returns true
in case \( x\) is a square, i.e. \( x = y*y\).