\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11.3 - Algebraic Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
AlgebraicKernel_d_2::NumberOfSolutions_2 Concept Reference

Definition

Computes the number of real solutions of the given bivariate polynomial system.

Refines:
AdaptableBinaryFunction
See Also
AlgebraicKernel_d_2::ConstructAlgebraicReal_2

Types

A model of this type must provide:

typedef
AlgebraicKernel_d_2::size_type 
result_type
 
typedef
AlgebraicKernel_d_2::Polynomial_2 
first_argument_type
 
typedef
AlgebraicKernel_d_2::Polynomial_2 
second_argument_type
 

Operations

result_type operator() (first_argument_type f, second_argument_type g)
 Returns the number of real solutions of the bivariate polynomial system \( (f,g)\). More...
 

Member Function Documentation

result_type AlgebraicKernel_d_2::NumberOfSolutions_2::operator() ( first_argument_type  f,
second_argument_type  g 
)

Returns the number of real solutions of the bivariate polynomial system \( (f,g)\).

Precondition
\( f\) is square free.
\( g\) is square free.
\( f\) and \( g\) are coprime.