CGAL 4.11.3 - 2D Generalized Barycentric Coordinates
|
Requirements of the template parameter Traits
for all the classes with two-dimensional barycentric coordinates from the namespace CGAL::Barycentric_coordinates
.
Kernel
Types | |
typedef unspecified_type | FT |
A model of FieldNumberType . | |
Two-dimensional Geometric Objects | |
typedef unspecified_type | Point_2 |
A model of Kernel::Point_2 . | |
typedef unspecified_type | Vector_2 |
A model of Kernel::Vector_2 . | |
Two-dimensional Constructions | |
typedef unspecified_type | Compute_area_2 |
A model of this concept must provide an FT operator(const Point_2 &p, const Point_2 &q, const Point_2 &r) that returns the signed area of the triangle defined by the points p, q, and r. | |
typedef unspecified_type | Compute_squared_distance_2 |
A model of this concept must provide an FT operator(const Point_2 &p, const Point_2 &q) that returns the squared Euclidean distance between the points p and q. | |
typedef unspecified_type | Compute_squared_length_2 |
A model of this concept must provide an FT operator(const Vector_2 &p) that returns the squared length of the vector p. | |
typedef unspecified_type | Compute_scalar_product_2 |
A model of this concept must provide an FT operator(const Vector_2 &p, const Vector_2 &q) that returns the scalar product between the vectors p and q. | |
Two-dimensional Generalized Predicates | |
typedef unspecified_type | Equal_2 |
A model of this concept must provide a bool operator(const Point_2 &p, const Point_2 &q) that returns true if p = q and false otherwise. | |
typedef unspecified_type | Collinear_2 |
A model of this concept must provide a bool operator(const Point_2 &p, const Point_2 &q, const Point_2 &r) that returns true if the points p, q, and r are collinear and false otherwise. | |
typedef unspecified_type | Collinear_are_ordered_along_line_2 |
A model of this concept must provide a bool operator(const Point_2 &p, const Point_2 &q, const Point_2 &r) that returns true if the point q lies between the points p and r and all three points are collinear. | |