\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.11.3 - dD Convex Hulls and Delaunay Triangulations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
DelaunayTraits_d Concept Reference

Definition

Deprecated:
This package is deprecated since the version 4.6 of CGAL. The package dD Triangulations should be used instead.

Requirements of the first traits class to be used with the class CGAL::Delaunay_d.

Has Models:

CGAL::Cartesian_d<FT,LA>

CGAL::Homogeneous_d<RT,LA>

Public Member Functions

 DelaunayTraits_d ()
 A default constructor and copy constructor is required.
 

Types

typedef unspecified_type Point_d
 the dD point type on which the Delaunay algorithm operates
 
typedef unspecified_type Sphere_d
 a dD sphere
 
typedef unspecified_type FT
 an arithmetic field type
 
typedef unspecified_type Point_of_sphere_d
 Predicate object type that provides Point_d operator()(Sphere_d s, int i), which returns the \( i\)th point defining sphere s.
 
typedef unspecified_type Construct_sphere_d
 Predicate object type that provides Sphere_d operator()(int d, ForwardIterator first, ForwardIterator last), which returns a dD sphere through the points in tuple[first,last).
 
typedef unspecified_type Contained_in_simplex_d
 Predicate object type that provides bool operator()(ForwardIterator first, ForwardIterator last, Point_d p), which determines if p is contained in the closed simplex defined by the points in tuple[first,last).
 
typedef unspecified_type Squared_distance_d
 Predicate object type that provides FT operator()(Point_d p,Point_d q), which determines the squared distance from p to q.
 
typedef unspecified_type Affinely_independent_d
 Predicate object type that provides bool operator()(ForwardIterator first, ForwardIterator last), which determines if the points in tuple[first,last) are affinely independent.
 

Operations

For each of the above function and predicate object types, Func_obj_type, a function must exist with the name func_obj_type_object that creates an instance of the function or predicate object type.

For example:

Construct_sphere_d construct_sphere_d_object ()