CGAL 4.11.3 - 2D and Surface Function Interpolation
|
Namespaces | |
cpp11 | |
IO | |
Scale_space_reconstruction_3 | |
Shape_detection_3 | |
Surface_mesh_parameterization | |
Functions | |
template<class RandomAccessIterator , class Functor , class GradFunctor , class Traits > | |
Functor::result_type | farin_c1_interpolation (RandomAccessIterator first, RandomAccessIterator beyond, const typename std::iterator_traits< RandomAccessIterator >::value_type::second_type &norm, const typename std::iterator_traits< ForwardIterator >::value_type::first_type &p, Functor function_value, GradFunctor function_gradient, const Traits &traits) |
generates the interpolated function value computed by Farin's interpolant. More... | |
template<class ForwardIterator , class Functor > | |
Functor::result_type::first_type | linear_interpolation (ForwardIterator first, ForwardIterator beyond, const typename std::iterator_traits< ForwardIterator >::value_type::second_type &norm, Functor function_values) |
The function linear_interpolation() computes the weighted sum of the function values which must be provided via a functor. More... | |
template<class ForwardIterator , class Functor , class GradFunctor , class Traits > | |
Functor::result_type | quadratic_interpolation (ForwardIterator first, ForwardIterator beyond, const typename std::iterator_traits< ForwardIterator >::value_type::second_type &norm, const typename std::iterator_traits< ForwardIterator >::value_type::first_type &p, Functor function_value, GradFunctor function_gradient, const Traits &traits) |
The function quadratic_interpolation() generates the interpolated function value as the weighted sum of the values plus a linear term in the gradient for each point of the point/coordinate pairs in the range [first, beyond) . More... | |
template<class ForwardIterator , class Functor , class GradFunctor , class Traits > | |
std::pair< typename Functor::result_type, bool > | sibson_c1_interpolation (ForwardIterator first, ForwardIterator beyond, const typename std::iterator_traits< ForwardIterator >::value_type::second_type &norm, const typename std::iterator_traits< ForwardIterator >::value_type::first_type &p, Functor function_value, GradFunctor function_gradient, const Traits &traits) |
The function sibson_c1_interpolation() generates the interpolated function value at the point p , using functors for the function values and the gradients, by applying Sibson's \( Z^1\) interpolant. More... | |
template<class ForwardIterator , class Functor , class GradFunctor , class Traits > | |
Functor::result_type | sibson_c1_interpolation_square (ForwardIterator first, ForwardIterator beyond, const typename std::iterator_traits< ForwardIterator >::value_type::second_type &norm, const typename std::iterator_traits< ForwardIterator >::value_type::first_type &p, Functor function_value, GradFunctor function_gradient, const Traits &traits) |
The same as sibson_c1_interpolation() except that no square root operation is needed for FT. | |
template<class Dt , class OutputIterator > | |
CGAL::Triple< OutputIterator, typename Dt::Geom_traits::FT, bool > | natural_neighbor_coordinates_2 (const Dt &dt, const typename Dt::Geom_traits::Point_2 &p, OutputIterator out, typename Dt::Face_handle start=typename Dt::Face_handle()) |
computes the natural neighbor coordinates for p with respect to the points in the two-dimensional Delaunay triangulation dt . More... | |
template<class Dt , class OutputIterator , class EdgeIterator > | |
CGAL::Triple< OutputIterator, typename Dt::Geom_traits::FT, bool > | natural_neighbor_coordinates_2 (const Dt &dt, const typename Dt::Geom_traits::Point_2 &p, OutputIterator out, EdgeIterator hole_begin, EdgeIterator hole_end) |
The same as above. More... | |
template<class Dt , class OutputIterator > | |
CGAL::Triple< OutputIterator, typename Dt::Geom_traits::FT, bool > | natural_neighbor_coordinates_2 (const Dt &dt, typename Dt::Vertex_handle vh, OutputIterator out) |
computes the natural neighbor coordinates of the point vh->point() with respect to the vertices of dt excluding vh->point() . More... | |
template<class Rt , class OutputIterator > | |
CGAL::Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > | regular_neighbor_coordinates_2 (const Rt &rt, const typename Rt::Weighted_point &p, OutputIterator out, typename Rt::Face_handle start=typename Rt::Face_handle()) |
computes the regular neighbor coordinates for p with respect to the weighted points in the two-dimensional regular triangulation rt . More... | |
template<class Rt , class OutputIterator , class EdgeIterator , class VertexIterator > | |
CGAL::Triple< OutputIterator, typename Traits::FT, bool > | regular_neighbor_coordinates_2 (const Rt &rt, const typename Traits::Weighted_point &p, OutputIterator out, EdgeIterator hole_begin, EdgeIterator hole_end, VertexIterator hidden_vertices_begin, VertexIterator hidden_vertices_end) |
The same as above. More... | |
template<class Rt , class OutputIterator > | |
CGAL::Triple< OutputIterator, typename Rt::Geom_traits::FT, bool > | regular_neighbor_coordinates_2 (const Rt &rt, typename Rt::Vertex_handle vh, OutputIterator out) |
computes the regular neighbor coordinates of the point vh->point() with respect to the vertices of rt excluding vh->point() . More... | |
template<class ForwardIterator , class Functor , class Traits > | |
Traits::Vector_d | sibson_gradient_fitting (ForwardIterator first, ForwardIterator beyond, const typename std::iterator_traits< ForwardIterator >::value_type::second_type &norm, const typename std::iterator_traits< ForwardIterator >::value_type::first_type &p, Functor f, const Traits &traits) |
estimates the gradient of a function at the point p given natural neighbor coordinates of p in the range [first, beyond) and the function values of the neighbors provided by the functor f . More... | |
template<class Dt , class OutputIterator , class Functor , class Traits > | |
OutputIterator | sibson_gradient_fitting_nn_2 (const Dt &dt, OutputIterator out, Functor f, const Traits &traits) |
estimates the function gradients at all vertices of dt that lie inside the convex hull using the coordinates computed by the function PkgInterpolationNaturalNeighborCoordinates2 . More... | |
template<class Rt , class OutputIterator , class Functor , class Traits > | |
OutputIterator | sibson_gradient_fitting_rn_2 (const Rt &rt, OutputIterator out, Functor f, const Traits &traits) |
estimates the function gradients at all vertices of rt that lie inside the convex hull using the coordinates computed by the functions PkgInterpolationRegularNeighborCoordinates2 . More... | |
template<class OutputIterator , class InputIterator , class Kernel > | |
CGAL::Triple< OutputIterator, typename Kernel::FT, bool > | surface_neighbor_coordinates_3 (InputIterator first, InputIterator beyond, const typename Kernel::Point_3 &p, const typename Kernel::Vector_3 &normal, OutputIterator out, const Kernel &K) |
The sample points \( \mathcal{P}\) are provided in the range [first , beyond)`. More... | |
template<class OutputIterator , class InputIterator , class ITraits > | |
CGAL::Triple< OutputIterator, typename ITraits::FT, bool > | surface_neighbor_coordinates_3 (InputIterator first, InputIterator beyond, const typename ITraits::Point_2 &p, OutputIterator out, const ITraits &traits) |
the same as above only that the traits class must be instantiated by the user. More... | |
template<class OutputIterator , class InputIterator , class Kernel > | |
CGAL::Quadruple < OutputIterator, typename Kernel::FT, bool, bool > | surface_neighbor_coordinates_certified_3 (InputIterator first, InputIterator beyond, const typename Kernel::Point_3 &p, const typename Kernel::Vector_3 &normal, OutputIterator out, const Kernel &K) |
Similar to the first function. More... | |
template<class OutputIterator , class InputIterator , class Kernel > | |
CGAL::Quadruple < OutputIterator, typename Kernel::FT, bool, bool > | surface_neighbor_coordinates_certified_3 (InputIterator first, InputIterator beyond, const typename Kernel::Point_3 &p, const typename Kernel::FT &max_distance, OutputIterator out, const Kernel &kernel) |
The same as above except that this function takes the maximal distance from p to the points in the range [first, beyond) as additional parameter. | |
template<class OutputIterator , class InputIterator , class ITraits > | |
CGAL::Quadruple < OutputIterator, typename ITraits::FT, bool, bool > | surface_neighbor_coordinates_certified_3 (InputIterator first, InputIterator beyond, const typename ITraits::Point_2 &p, OutputIterator out, const ITraits &traits) |
The same as above only that the traits class must be instantiated by the user and without the parameter max_distance . More... | |
template<class OutputIterator , class InputIterator , class ITraits > | |
CGAL::Quadruple < OutputIterator, typename ITraits::FT, bool, bool > | surface_neighbor_coordinates_certified_3 (InputIterator first, InputIterator beyond, const typename ITraits::Point_2 &p, const typename ITraits::FT &max_distance, OutputIterator out, const ITraits &traits) |
The same as above with the parameter max_distance . | |
template<class Dt , class OutputIterator > | |
CGAL::Triple< OutputIterator, typename Dt::Geom_traits::FT, bool > | surface_neighbor_coordinates_3 (const Dt &dt, const typename Dt::Geom_traits::Point_3 &p, const typename Dt::Geom_traits::Vector_3 &normal, OutputIterator out, typename Dt::Cell_handle start=typename Dt::Cell_handle()) |
computes the surface neighbor coordinates with respect to the points that are vertices of the Delaunay triangulation dt . More... | |
template<class Dt , class OutputIterator , class ITraits > | |
CGAL::Triple< OutputIterator, typenameDt::Geom_traits::FT, bool > | surface_neighbor_coordinates_3 (const Dt &dt, const typename Dt::Geom_traits::Point_3 &p, OutputIterator out, const ITraits &traits, typename Dt::Cell_handle start=typename Dt::Cell_handle()) |
The same as above only that the parameter traits instantiates the geometric traits class. More... | |
template<class OutputIterator , class InputIterator , class Kernel > | |
OutputIterator | surface_neighbors_3 (InputIterator first, InputIterator beyond, const typename Kernel::Point_3 &p, const typename Kernel::Vector_3 &normal, OutputIterator out, const Kernel &K) |
The sample points \( \mathcal{P}\) are provided in the range [first, beyond) . More... | |
template<class OutputIterator , class InputIterator , class ITraits > | |
OutputIterator | surface_neighbors_3 (InputIterator first, InputIterator beyond, const typename ITraits::Point_2 &p, OutputIterator out, const ITraits &traits) |
The same as above only that the traits class must be instantiated by the user. More... | |
template<class OutputIterator , class InputIterator , class Kernel > | |
std::pair< OutputIterator, bool > | surface_neighbors_certified_3 (InputIterator first, InputIterator beyond, const typename Kernel::Point_3 &p, const typename Kernel::Vector_3 &normal, OutputIterator out, const Kernel &K) |
Similar to the first function. More... | |
template<class OutputIterator , class InputIterator , class Kernel > | |
std::pair< OutputIterator, bool > | surface_neighbors_certified_3 (InputIterator first, InputIterator beyond, const typename Kernel::Point_3 &p, const typename Kernel::Vector_3 &normal, const typename Kernel::FT &max_distance, OutputIterator out, const Kernel &kernel) |
The same as above except that this function takes the maximal distance from p to the points in the range [first, beyond) as additional parameter. | |
template<class OutputIterator , class InputIterator , class ITraits > | |
std::pair< OutputIterator, bool > | surface_neighbors_certified_3 (InputIterator first, InputIterator beyond, const typename ITraits::Point_2 &p, OutputIterator out, const ITraits &traits) |
The same as above only that the traits class must be instantiated by the user. More... | |
template<class OutputIterator , class InputIterator , class ITraits > | |
std::pair< OutputIterator, bool > | surface_neighbors_certified_3 (InputIterator first, InputIterator beyond, const typename ITraits::Point_2 &p, const typename ITraits::FT &max_distance, OutputIterator out, const ITraits &traits) |
The same as above with the parameter max_distance . | |
template<class Dt , class OutputIterator > | |
OutputIterator | surface_neighbors_3 (const Dt &dt, const typename Dt::Geom_traits::Point_3 &p, const typename Dt::Geom_traits::Vector_3 &normal, OutputIterator out, typename Dt::Cell_handle start=typename Dt::Cell_handle()) |
computes the surface neighbor coordinates with respect to the points that are vertices of the Delaunay triangulation dt . More... | |
template<class Dt , class OutputIterator , class ITraits > | |
OutputIterator | surface_neighbors_3 (const Dt &dt, const typename ITraits::Point_2 &p, OutputIterator out, const ITraits &traits, typename Dt::Cell_handle start=typename Dt::Cell_handle()) |
The same as above only that the parameter traits instantiates the geometric traits class. More... | |