CGAL 4.11.3 - Polynomial
|
Note: This functor is optional!
Computes the polynomial subresultant of two polynomials \( p\) and \( q\) of degree \( n\) and \( m\), respectively, as defined in the documentation of PolynomialTraits_d::PolynomialSubresultants
. Moreover, for \( \mathrm{Sres}_i(p,q)\), polynomials \( u_i\) and \( v_i\) with \( \deg u_i\leq m-i-1\) and \( \deg v_i\leq n-i-1\) are computed such that \( \mathrm{Sres}_i(p,q)=u_i p + v_i q\). \( u_i\) and \( v_i\) are called the cofactors of \( \mathrm{Sres}_i(p,q)\).
The result is written in three output ranges, each of length \( \min\{n,m\}+1\), starting with the \( 0\)-th subresultant and the corresponding cofactors.
Operations | |
template<typename OutputIterator1 , typename OutputIterator2 , typename OutputIterator3 > | |
OutputIterator1 | operator() (Polynomial_d p, Polynomial_d q, OutputIterator1 sres, OutputIterator2 co_p, OutputIterator3 co_q) |
computes the subresultants of \( p\) and \( q\), and the cofactors, with respect to the outermost variable. More... | |
template<typename OutputIterator1 , typename OutputIterator2 , typename OutputIterator3 > | |
OutputIterator1 | operator() (Polynomial_d p, Polynomial_d q, OutputIterator1 sres, OutputIterator2 co_p, OutputIterator3 co_q, int i) |
computes the subresultants of \( p\) and \( q\), and the cofactors, with respect to \( x_i\). More... | |
OutputIterator1 PolynomialTraits_d::PolynomialSubresultantsWithCofactors::operator() | ( | Polynomial_d | p, |
Polynomial_d | q, | ||
OutputIterator1 | sres, | ||
OutputIterator2 | co_p, | ||
OutputIterator3 | co_q | ||
) |
computes the subresultants of \( p\) and \( q\), and the cofactors, with respect to the outermost variable.
Each element is of type PolynomialTraits_d::Polynomial_d
.
OutputIterator1 PolynomialTraits_d::PolynomialSubresultantsWithCofactors::operator() | ( | Polynomial_d | p, |
Polynomial_d | q, | ||
OutputIterator1 | sres, | ||
OutputIterator2 | co_p, | ||
OutputIterator3 | co_q, | ||
int | i | ||
) |
computes the subresultants of \( p\) and \( q\), and the cofactors, with respect to \( x_i\).
Each element is of type PolynomialTraits_d::Polynomial_d
.