\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - Algebraic Foundations
ImplicitInteroperable Concept Reference

Definition

Two types A and B are a model of the concept ImplicitInteroperable, if there is a superior type, such that binary arithmetic operations involving A and B result in this type. This type is CGAL::Coercion_traits<A,B>::Type. In case types are RealEmbeddable this also implies that mixed compare operators are available.

The type CGAL::Coercion_traits<A,B>::Type is required to be implicit constructible from A and B.

In this case CGAL::Coercion_traits<A,B>::Are_implicit_interoperable is CGAL::Tag_true.

Refines:
ExplicitInteroperable
See also
CGAL::Coercion_traits<A,B>
ExplicitInteroperable
AlgebraicStructureTraits
RealEmbeddableTraits