\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - Algebraic Foundations
RealEmbeddableTraits_::ToDouble Concept Reference

Definition

AdaptableUnaryFunction computes a double approximation of a real embeddable number.

Remark: In order to control the quality of approximation one has to resort to methods that are specific to NT. There are no general guarantees whatsoever.

Refines:
AdaptableUnaryFunction
See also
RealEmbeddableTraits

Types

typedef double result_type
 The result type.
 
typedef unspecified_type argument_type
 Is RealEmbeddableTraits::Type.
 

Operations

result_type operator() (argument_type x)
 computes a double approximation of a real embeddable number.