\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - Algebraic Kernel
AlgebraicKernel_d_1::ComputePolynomial_1 Concept Reference

Definition

Computes a square free univariate polynomial \( p\), such that the given AlgebraicKernel_d_1::Algebraic_real_1 is a root of \( p\).

Refines:
AdaptableUnaryFunction
See also
AlgebraicKernel_d_1::Isolate_1

Types

typedef AlgebraicKernel_d_1::Polynomial_1 result_type
 
typedef AlgebraicKernel_d_1::Algebraic_real_1 argument_type
 

Operations

result_type operator() (argument_type x)
 Computes a square free polynomial \( p\), such that \( x\) is a real root of \( p\).