\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - 2D Circular Geometry Kernel
AlgebraicKernelForCircles::Solve Concept Reference

Definition

Operations

A model of this concept must provide:

template<class OutputIterator >
OutputIterator operator() (const AlgebraicKernelForCircles::Polynomial_1_2 &p1, const AlgebraicKernelForCircles::Polynomial_1_2 &p2, OutputIterator res)
 Copies in the output iterator the common roots of p1 and p2, with their multiplicity, as objects of type std::pair< AlgebraicKernelForCircles::Root_for_circles_2_2, int>.
 
template<class OutputIterator >
OutputIterator operator() (const AlgebraicKernelForCircles::Polynomial_1_2 &p1, const AlgebraicKernelForCircles::Polynomial_for_circles_2_2 &p2, OutputIterator res)
 Same as previous.
 
template<class OutputIterator >
OutputIterator operator() (const AlgebraicKernelForCircles::Polynomial_for_circles_2_2 &p1, const AlgebraicKernelForCircles::Polynomial_1_2 &p2, OutputIterator res)
 Same as previous.
 
template<class OutputIterator >
OutputIterator operator() (const AlgebraicKernelForCircles::Polynomial_for_circles_2_2 &p1, const AlgebraicKernelForCircles::Polynomial_for_circles_2_2 &p2, OutputIterator res)
 Same as previous.