\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - 2D and 3D Linear Geometry Kernel

Definition

Operations

A model of this concept must provide:

bool operator() (const Kernel::Ray_2 &r, const Kernel::Point_2 &p)
 checks if point p is on r. More...
 
bool operator() (const Kernel::Segment_2 &s, const Kernel::Point_2 &p)
 checks if point p is on s. More...
 

Member Function Documentation

◆ operator()() [1/2]

bool Kernel::CollinearHasOn_2::operator() ( const Kernel::Ray_2 r,
const Kernel::Point_2 p 
)

checks if point p is on r.

Precondition
p is on the supporting line of r.

◆ operator()() [2/2]

bool Kernel::CollinearHasOn_2::operator() ( const Kernel::Segment_2 s,
const Kernel::Point_2 p 
)

checks if point p is on s.

Precondition
p is on the supporting line of s.