\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - 2D and 3D Linear Geometry Kernel

Definition

Operations

A model of this concept must provide:

Kernel::Point_3 operator() (const Kernel::Segment_3 &s, int i)
 returns source or target of s: fo(s,0) returns the source of s, fo(s,1) returns the target of s. More...
 
Kernel::Point_3 operator() (const Kernel::Iso_cuboid_3 &c, int i)
 returns the i'th vertex of c, as indicated in the figure below. More...
 
Kernel::Point_3 operator() (const Kernel::Triangle_3 &t, int i)
 returns the i'th vertex of t. More...
 
Kernel::Point_3 operator() (const Kernel::Tetrahedron_3 &t, int i)
 returns the i'th vertex of t. More...
 

Member Function Documentation

◆ operator()() [1/4]

Kernel::Point_3 Kernel::ConstructVertex_3::operator() ( const Kernel::Segment_3 s,
int  i 
)

returns source or target of s: fo(s,0) returns the source of s, fo(s,1) returns the target of s.

The parameter i is taken modulo 2.

◆ operator()() [2/4]

Kernel::Point_3 Kernel::ConstructVertex_3::operator() ( const Kernel::Iso_cuboid_3 c,
int  i 
)

returns the i'th vertex of c, as indicated in the figure below.

The parameter i is taken modulo 8.

◆ operator()() [3/4]

Kernel::Point_3 Kernel::ConstructVertex_3::operator() ( const Kernel::Triangle_3 t,
int  i 
)

returns the i'th vertex of t.

The parameter i is taken modulo 3.

◆ operator()() [4/4]

Kernel::Point_3 Kernel::ConstructVertex_3::operator() ( const Kernel::Tetrahedron_3 t,
int  i 
)

returns the i'th vertex of t.

The parameter i is taken modulo 4.