\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - 2D and 3D Linear Geometry Kernel

Definition

Operations

A model of this concept must provide:

bool operator() (const Kernel::Sphere_3 &s, const Kernel::Point_3 &p)
 returns true iff p lies on the bounded side of s.
 
bool operator() (const Kernel::Tetrahedron_3 &t, const Kernel::Point_3 &p)
 returns true iff p lies on the bounded side of t.
 
bool operator() (const Kernel::Iso_cuboid_3 &c, const Kernel::Point_3 &p)
 returns true iff p lies on the bounded side of c.
 
bool operator() (const Kernel::Sphere_3 &s1, const Kernel::Sphere_3 &s2, const Kernel::Point_3 &a, const Kernel::Point_3 &b)
 returns true iff the line segment ab is inside the union of the bounded sides of s1 and s2.