\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - 2D and 3D Linear Geometry Kernel

Definition

Refines:
AdaptableFunctor (with four arguments)
See also
CGAL::orientation()

Operations

A model of this concept must provide:

Orientation operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r, const Kernel::Point_3 &s)
 returns CGAL::POSITIVE, if s lies on the positive side of the oriented plane h defined by p, q, and r, returns CGAL::NEGATIVE if s lies on the negative side of h, and returns CGAL::COPLANAR if s lies on h.
 
Orientation operator() (const Kernel::Vector_3 &u, const Kernel::Vector_3 &v, const Kernel::Vector_3 &w)
 returns CGAL::POSITIVE if u, v and w are positively oriented, returns CGAL::NEGATIVE if u, v and w are negatively oriented, and returns CGAL::COPLANAR if u, v and w are coplanar.
 
Orientation operator() (const Kernel::Sphere_3 &s)
 returns the orientation of the sphere s.