\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - Number Types
Root_of_traits.h File Reference

Classes

struct  CGAL::Root_of_traits< RT >
 For a RealEmbeddable IntegralDomain RT, the class template Root_of_traits<RT> associates a type Root_of_2, which represents algebraic numbers of degree 2 over RT. More...
 

Namespaces

 CGAL
 

Functions

template<typename RT , typename OutputIterator >
OutputIterator CGAL::compute_roots_of_2 (const RT &a, const RT &b, const RT &c, OutputIterator oit)
 The function compute_roots_of_2() solves a univariate polynomial as it is defined by the coefficients given to the function. More...
 
template<typename RT >
Root_of_traits< RT >::Root_of_2 CGAL::make_root_of_2 (const RT &a, const RT &b, const RT &c, bool s)
 The function make_root_of_2() constructs an algebraic number of degree 2 over a ring number type. More...
 
template<typename RT >
Root_of_traits< RT >::Root_of_2 CGAL::make_root_of_2 (RT alpha, RT beta, RT gamma)
 The function make_root_of_2() constructs an algebraic number of degree 2 over a ring number type. More...
 
template<typename RT >
Root_of_traits< RT >::Root_of_2 CGAL::make_sqrt (const RT &x)
 The function make_sqrt() constructs a square root of a given value of type \( RT\). More...