\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - Polynomial
PolynomialTraits_d::InnermostLeadingCoefficient Concept Reference

Definition

This AdaptableUnaryFunction computes the innermost leading coefficient of a PolynomialTraits_d::Polynomial_d \( p\). The innermost leading coefficient is recursively defined as the innermost leading coefficient of the leading coefficient of \( p\). In case \( p\) is univariate it coincides with the leading coefficient.

Refines:

AdaptableUnaryFunction

CopyConstructible

DefaultConstructible

See also
Polynomial_d
PolynomialTraits_d

Types

typedef PolynomialTraits_d::Innermost_coefficient_type result_type
 
typedef PolynomialTraits_d::Polynomial_d argument_type
 

Operations

result_type operator() (argument_type p)
 Computes the innermost leading coefficient of \( p\).