\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.2 - Algebraic Kernel
AlgebraicKernel_d_2::NumberOfSolutions_2 Concept Reference

Definition

Computes the number of real solutions of the given bivariate polynomial system.

Refines:
AdaptableBinaryFunction
See also
AlgebraicKernel_d_2::ConstructAlgebraicReal_2

Types

A model of this type must provide:

typedef AlgebraicKernel_d_2::size_type result_type
 
typedef AlgebraicKernel_d_2::Polynomial_2 first_argument_type
 
typedef AlgebraicKernel_d_2::Polynomial_2 second_argument_type
 

Operations

result_type operator() (first_argument_type f, second_argument_type g)
 Returns the number of real solutions of the bivariate polynomial system \( (f,g)\). More...
 

Member Function Documentation

◆ operator()()

result_type AlgebraicKernel_d_2::NumberOfSolutions_2::operator() ( first_argument_type  f,
second_argument_type  g 
)

Returns the number of real solutions of the bivariate polynomial system \( (f,g)\).

Precondition
\( f\) is square free.
\( g\) is square free.
\( f\) and \( g\) are coprime.