\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.2 - 2D and 3D Linear Geometry Kernel

Functions

template<typename Kernel >
Angle CGAL::angle (const CGAL::Vector_2< Kernel > &u, const CGAL::Vector_2< Kernel > &v)
 returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors u and v.
 
template<typename Kernel >
Angle CGAL::angle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r)
 returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the three points p, q, r (q being the vertex of the angle). More...
 
template<typename Kernel >
Angle CGAL::angle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s)
 returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq, rs. More...
 
template<typename Kernel >
Angle CGAL::angle (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v)
 returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors u and v.
 
template<typename Kernel >
Angle CGAL::angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r)
 returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the three points p, q, r (q being the vertex of the angle).
 
template<typename Kernel >
Angle CGAL::angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s)
 returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq, rs. More...
 
template<typename Kernel >
Angle CGAL::angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Vector_3< Kernel > &v)
 returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the normal of the triangle pqr and the vector v.
 
template<typename Kernel >
Kernel::FT CGAL::approximate_dihedral_angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s)
 returns an approximation of the signed dihedral angle in the tetrahedron pqrs of edge pq. More...
 

Function Documentation

◆ angle() [1/3]

template<typename Kernel >
Angle CGAL::angle ( const CGAL::Point_2< Kernel > &  p,
const CGAL::Point_2< Kernel > &  q,
const CGAL::Point_2< Kernel > &  r 
)

#include <CGAL/Kernel/global_functions.h>

returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the three points p, q, r (q being the vertex of the angle).

The returned value is the same as angle(p - q, r - q).

◆ angle() [2/3]

template<typename Kernel >
Angle CGAL::angle ( const CGAL::Point_2< Kernel > &  p,
const CGAL::Point_2< Kernel > &  q,
const CGAL::Point_2< Kernel > &  r,
const CGAL::Point_2< Kernel > &  s 
)

#include <CGAL/Kernel/global_functions.h>

returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq, rs.

The returned value is the same as angle(q - p, s - r).

◆ angle() [3/3]

template<typename Kernel >
Angle CGAL::angle ( const CGAL::Point_3< Kernel > &  p,
const CGAL::Point_3< Kernel > &  q,
const CGAL::Point_3< Kernel > &  r,
const CGAL::Point_3< Kernel > &  s 
)

#include <CGAL/Kernel/global_functions.h>

returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq, rs.

The returned value is the same as angle(q - p, s - r).

◆ approximate_dihedral_angle()

template<typename Kernel >
Kernel::FT CGAL::approximate_dihedral_angle ( const CGAL::Point_3< Kernel > &  p,
const CGAL::Point_3< Kernel > &  q,
const CGAL::Point_3< Kernel > &  r,
const CGAL::Point_3< Kernel > &  s 
)

#include <CGAL/Kernel/global_functions.h>

returns an approximation of the signed dihedral angle in the tetrahedron pqrs of edge pq.

The sign is negative if orientation(p,q,r,s) is CGAL::NEGATIVE and positive otherwise. The angle is given in degree.

Precondition
p,q,r and p,q,s are not collinear.