\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.2 - Polynomial
PolynomialTraits_d::SignAt Concept Reference

Definition

This AdaptableFunctor returns the sign of a PolynomialTraits_d::Polynomial_d \( p\) at given Cartesian point represented as an iterator range.

This functor is well defined if PolynomialTraits_d::Innermost_coefficient_type is RealEmbeddable.

Refines:

AdaptableFunctor

CopyConstructible

DefaultConstructible

See also
Polynomial_d
PolynomialTraits_d

Types

typedef CGAL::Sign result_type
 

Operations

template<class InputIterator >
result_type operator() (PolynomialTraits_d::Polynomial_d p, InputIterator begin, InputIterator end)
 Returns the sign of \( p\) at the given Cartesian point, where begin is referring to the innermost variable. More...
 

Member Function Documentation

◆ operator()()

template<class InputIterator >
result_type PolynomialTraits_d::SignAt::operator() ( PolynomialTraits_d::Polynomial_d  p,
InputIterator  begin,
InputIterator  end 
)

Returns the sign of \( p\) at the given Cartesian point, where begin is referring to the innermost variable.

Precondition
(end-begin == PolynomialTraits_d::d)
std::iterator_traits< InputIterator >::value_type is ExplicitInteroperable with PolynomialTraits_d::Innermost_coefficient_type.