CGAL 4.12 - Algebraic Kernel
|
Constructs an AlgebraicKernel_d_2::Algebraic_real_2
.
Types | |
typedef AlgebraicKernel_d_2::Algebraic_real_2 | result_type |
Operations | |
result_type | operator() (int x, int y) |
introduces an AlgebraicKernel_d_2::Algebraic_real_2 initialized to \( (x,y)\). | |
result_type | operator() (AlgebraicKernel_d_2::Bound x, AlgebraicKernel_d_2::Bound y) |
introduces an AlgebraicKernel_d_2::Algebraic_real_2 initialized to \( (x,y)\). | |
result_type | operator() (AlgebraicKernel_d_2::Coefficient x, AlgebraicKernel_d_2::Coefficient y) |
introduces an AlgebraicKernel_d_2::Algebraic_real_2 initialized to \( (x,y)\). | |
result_type | operator() (AlgebraicKernel_d_2::Algebraic_real_1 x, AlgebraicKernel_d_2::Algebraic_real_1 y) |
introduces an AlgebraicKernel_d_2::Algebraic_real_2 initialized to \( (x,y)\). | |
result_type | operator() (AlgebraicKernel_d_2::Polynomial_2 f, AlgebraicKernel_d_2::Polynomial_2 g, AlgebraicKernel_d_2::size_type i) |
introduces an AlgebraicKernel_d_2::Algebraic_real_2 initialized to the \( i\)-th real common solution of \( f\) and \( g\), with respect to xy -lexicographic order. More... | |
result_type | operator() (AlgebraicKernel_d_2::Polynomial_2 f, AlgebraicKernel_d_2::Polynomial_2 g, AlgebraicKernel_d_2::Bound x_l, AlgebraicKernel_d_2::Bound x_u, AlgebraicKernel_d_2::Bound y_l, AlgebraicKernel_d_2::Bound y_u) |
introduces an AlgebraicKernel_d_2::Algebraic_real_2 initialized to the only real intersection of \( f\) and \( g\) in the open box \( B = (x_l,x_u)\times(y_l,y_u)\). More... | |
result_type AlgebraicKernel_d_2::ConstructAlgebraicReal_2::operator() | ( | AlgebraicKernel_d_2::Polynomial_2 | f, |
AlgebraicKernel_d_2::Polynomial_2 | g, | ||
AlgebraicKernel_d_2::size_type | i | ||
) |
introduces an AlgebraicKernel_d_2::Algebraic_real_2
initialized to the \( i\)-th real common solution of \( f\) and \( g\), with respect to xy
-lexicographic order.
The index starts at \( 0\), that is, the system must have at least \( i+1\) real solutions.
result_type AlgebraicKernel_d_2::ConstructAlgebraicReal_2::operator() | ( | AlgebraicKernel_d_2::Polynomial_2 | f, |
AlgebraicKernel_d_2::Polynomial_2 | g, | ||
AlgebraicKernel_d_2::Bound | x_l, | ||
AlgebraicKernel_d_2::Bound | x_u, | ||
AlgebraicKernel_d_2::Bound | y_l, | ||
AlgebraicKernel_d_2::Bound | y_u | ||
) |
introduces an AlgebraicKernel_d_2::Algebraic_real_2
initialized to the only real intersection of \( f\) and \( g\) in the open box \( B = (x_l,x_u)\times(y_l,y_u)\).