\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12 - 2D Arrangements
Arrangement_on_surface_2/polylines.cpp
// Constructing an arrangement of polylines.
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_polyline_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <vector>
#include <list>
#include "arr_print.h"
/*
Define the Arrangement traits class to be used. You can either use some user
defined kernel and Segment_traits_2 or the defaults.
*/
// Instantiate the traits class using a user-defined kernel
// and Segment_traits_2.
typedef CGAL::Arr_segment_traits_2<Kernel> Segment_traits_2;
// Identical instantiation can be achieved using the default Kernel:
// typedef CGAL::Arr_polyline_traits_2<> Geom_traits_2;
typedef Geom_traits_2::Point_2 Point_2;
typedef Geom_traits_2::Segment_2 Segment_2;
typedef Geom_traits_2::Curve_2 Polyline_2;
typedef CGAL::Arrangement_2<Geom_traits_2> Arrangement_2;
int main()
{
Geom_traits_2 traits;
Arrangement_2 arr(&traits);
Geom_traits_2::Construct_curve_2 polyline_construct =
traits.construct_curve_2_object();
Point_2 points1[5];
points1[0] = Point_2(0, 0);
points1[1] = Point_2(2, 4);
points1[2] = Point_2(3, 0);
points1[3] = Point_2(4, 4);
points1[4] = Point_2(6, 0);
Polyline_2 pi1 = polyline_construct(&points1[0], &points1[5]);
std::list<Point_2> points2;
points2.push_back(Point_2(1, 3));
points2.push_back(Point_2(0, 2));
points2.push_back(Point_2(1, 0));
points2.push_back(Point_2(2, 1));
points2.push_back(Point_2(3, 0));
points2.push_back(Point_2(4, 1));
points2.push_back(Point_2(5, 0));
points2.push_back(Point_2(6, 2));
points2.push_back(Point_2(5, 3));
points2.push_back(Point_2(4, 2));
Polyline_2 pi2 = polyline_construct(points2.begin(), points2.end());
std::vector<Segment_2> segs;
segs.push_back(Segment_2(Point_2(0, 2), Point_2(1, 2)));
segs.push_back(Segment_2(Point_2(1, 2), Point_2(3, 6)));
segs.push_back(Segment_2(Point_2(3, 6), Point_2(5, 2)));
Polyline_2 pi3 = polyline_construct(segs.begin(), segs.end());
insert(arr, pi1);
insert(arr, pi2);
insert(arr, pi3);
print_arrangement(arr);
return 0;
}