\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12 - 3D Spherical Geometry Kernel
SphericalKernel::Intersect_3 Concept Reference

Definition

Operations

A model of this concept must provide:

template<class OutputIterator >
OutputIterator operator() (const Type1 &obj1, const Type2 &obj2, OutputIterator intersections)
 Copies in the output iterator the intersection elements between the two objects. More...
 
template<class OutputIterator >
OutputIterator operator() (const Type1 &obj1, const Type2 &obj2, const Type3 &obj3, OutputIterator intersections)
 Copies in the output iterator the intersection elements between the three objects. More...
 

Member Function Documentation

◆ operator()() [1/2]

template<class OutputIterator >
OutputIterator SphericalKernel::Intersect_3::operator() ( const Type1 &  obj1,
const Type2 &  obj2,
OutputIterator  intersections 
)

Copies in the output iterator the intersection elements between the two objects.

intersections iterates on elements of type CGAL::Object, in lexicographic order when this ordering is defined on the computed objects.

Type1 and Type2 can both be either:

depending on the types Type1 and Type2, the computed CGAL::Object's can be assigned to

◆ operator()() [2/2]

template<class OutputIterator >
OutputIterator SphericalKernel::Intersect_3::operator() ( const Type1 &  obj1,
const Type2 &  obj2,
const Type3 &  obj3,
OutputIterator  intersections 
)

Copies in the output iterator the intersection elements between the three objects.

intersections iterates on elements of type CGAL::Object, in lexicographic order when this ordering is defined on the computed objects.

Type1, Type2 and Type3 can be either:

and depending of these types, the computed CGAL::Object's can be assigned to