\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12 - Geometric Object Generators
PointGenerator Concept Reference

Definition

The concept PointGenerator defines the requirements for a point generator, which can be used in places where input iterators are called for.

Has Models:

CGAL::Random_points_in_ball_d<Point_d,>

CGAL::Random_points_in_disc_2<Point_2, Creator>

CGAL::Random_points_in_square_2<Point_2, Creator>

CGAL::Random_points_in_triangle_2<Point_2, Creator>

CGAL::Random_points_on_circle_2<Point_2, Creator>

CGAL::Random_points_on_segment_2<Point_2, Creator>

CGAL::Random_points_on_square_2<Point_2, Creator>

CGAL::Random_points_in_cube_3<Point_3, Creator>

CGAL::Random_points_in_cube_d<Point_d>

CGAL::Random_points_in_sphere_3<Point_3, Creator>

CGAL::Random_points_in_triangle_3<Point_3, Creator>

CGAL::Random_points_in_tetrahedron_3<Point_3, Creator>

CGAL::Random_points_on_sphere_3<Point_3, Creator>

CGAL::Random_points_on_sphere_d<Point_d>

Types

typedef unspecified_type value_type
 the type of point being generated.
 

Operations

double range () const
 returns an absolute bound for the coordinates of all generated points.