\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.1 - 2D Periodic Triangulations
Periodic_2TriangulationFaceBase_2 Concept Reference

Definition

At the base level (see Section Software Design), a face stores handles to its four vertices and to its four neighbor faces. The vertices and neighbors are indexed 0, 1 and 2. Neighbor \( i\) lies opposite to vertex \( i\).

Refines:
TriangulationFaceBase_2
Has Models:
CGAL::Periodic_2_triangulation_face_base_2
See also
TriangulationDataStructure_2
TriangulationFaceBase_2
Periodic_2TriangulationVertexBase_2

Access Functions

int offset (int i) const
 Returns the offset of vertex i. More...
 
bool has_zero_offsets () const
 Returns true if the offset of vertex i is zero for \( i \in\{0, 1, 2\}\).
 

Setting

void set_offsets (int off0, int off1, int off2)
 Sets the vertex offsets according to off0 to off2.
 

Member Function Documentation

◆ offset()

int Periodic_2TriangulationFaceBase_2::offset ( int  i) const

Returns the offset of vertex i.

Precondition
\( i \in\{0, 1, 2\}\).