\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.2 - Algebraic Foundations
RealEmbeddableTraits_ Namespace Reference

Classes

class  Abs
 AdaptableUnaryFunction computes the absolute value of a number. More...
 
class  Compare
 AdaptableBinaryFunction compares two real embeddable numbers. More...
 
class  IsNegative
 AdaptableUnaryFunction, returns true in case the argument is negative. More...
 
class  IsPositive
 AdaptableUnaryFunction, returns true in case the argument is positive. More...
 
class  IsZero
 AdaptableUnaryFunction, returns true in case the argument is 0. More...
 
class  Sgn
 This AdaptableUnaryFunction computes the sign of a real embeddable number. More...
 
class  ToDouble
 AdaptableUnaryFunction computes a double approximation of a real embeddable number. More...
 
class  ToInterval
 AdaptableUnaryFunction computes for a given real embeddable number \( x\) a double interval containing \( x\). This interval is represented by std::pair<double,double>. More...