\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.2 - 3D Alpha Shapes
FixedAlphaShapeVertex_3 Concept Reference

Definition

The concept FixedAlphaShapeVertex_3 describes the requirements for the base vertex of a alpha shape with a fixed value alpha.

Refines:

TriangulationVertexBase_3, if the underlying triangulation of the alpha shape is a Delaunay triangulation.

RegularTriangulationVertexBase_3, if the underlying triangulation of the alpha shape is a regular triangulation.

Periodic_3TriangulationDSVertexBase_3, if the underlying triangulation of the alpha shape is a periodic triangulation.

Has Models:
CGAL::Fixed_alpha_shape_vertex_base_3 (templated with the appropriate triangulation vertex base class).

Types

typedef unspecified_type Point
 Must be the same as the point type provided by the geometric traits class of the triangulation.
 

Creation

 FixedAlphaShapeVertex_3 ()
 default constructor.
 
 FixedAlphaShapeVertex_3 (Point p)
 constructor setting the point.
 
 FixedAlphaShapeVertex_3 (Point p, const Cell_handle &c)
 constructor setting the point and an incident cell.
 

Access Functions

bool is_on_chull ()
 Returns a boolean indicating whether the point is on the convex hull of the point of the triangulation.
 
Classification_type get_classification_type ()
 Returns the classification of the vertex.
 

Modifiers

void set_classification_type (Classification_type type)
 Sets the classification of the vertex.
 
void is_on_chull (bool b)
 Sets whether the vertex is on the convex hull.