\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.2 - 2D and 3D Linear Geometry Kernel
Kernel::ComputeSquaredRadius_2 Concept Reference

Definition

Operations

A model of this concept must provide:

Kernel::FT operator() (const Kernel::Circle_2 &c)
 returns the squared radius of c.
 
Kernel::FT operator() (const Kernel::Point_2 &p, const Kernel::Point_2 &q, const Kernel::Point_2 &r)
 returns the squared radius of the circle passing through p, q and r. More...
 
Kernel::FT operator() (const Kernel::Point_2 &p, const Kernel::Point_2 &q)
 returns the squared radius of the smallest circle passing through p, and q, i.e. one fourth of the squared distance between p and q.
 
Kernel::FT operator() (const Kernel::Point_2 &p)
 returns the squared radius of the smallest circle passing through p, i.e. \( 0\).
 

Member Function Documentation

◆ operator()()

Kernel::FT Kernel::ComputeSquaredRadius_2::operator() ( const Kernel::Point_2 p,
const Kernel::Point_2 q,
const Kernel::Point_2 r 
)

returns the squared radius of the circle passing through p, q and r.

Precondition
p, q and r are not collinear.