\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.2 - 2D and 3D Linear Geometry Kernel

Definition

Refines:
AdaptableFunctor (with three arguments)
See also
CGAL::orientation()

Operations

A model of this concept must provide:

Orientation operator() (const Kernel::Point_2 &p, const Kernel::Point_2 &q, const Kernel::Point_2 &r)
 returns CGAL::LEFT_TURN, if r lies to the left of the oriented line l defined by p and q, returns CGAL::RIGHT_TURN if r lies to the right of l, and returns CGAL::COLLINEAR if r lies on l.
 
Orientation operator() (const Kernel::Vector_2 &u, const Kernel::Vector_2 &v)
 returns CGAL::LEFT_TURN if u and v form a left turn, returns CGAL::RIGHT_TURN if u and v form a right turn, and returns CGAL::COLLINEAR if u and v are collinear.