CGAL 4.13.2 - 2D and 3D Linear Geometry Kernel
|
Functions | |
template<typename Kernel > | |
Angle | CGAL::angle (const CGAL::Vector_2< Kernel > &u, const CGAL::Vector_2< Kernel > &v) |
returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors u and v . | |
template<typename Kernel > | |
Angle | CGAL::angle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the three points p , q , r (q being the vertex of the angle). More... | |
template<typename Kernel > | |
Angle | CGAL::angle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s) |
returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq , rs . More... | |
template<typename Kernel > | |
Angle | CGAL::angle (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v) |
returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors u and v . | |
template<typename Kernel > | |
Angle | CGAL::angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the three points p , q , r (q being the vertex of the angle). | |
template<typename Kernel > | |
Angle | CGAL::angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq , rs . More... | |
template<typename Kernel > | |
Angle | CGAL::angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Vector_3< Kernel > &v) |
returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the normal of the triangle pqr and the vector v . | |
template<typename Kernel > | |
Kernel::FT | CGAL::approximate_dihedral_angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
returns an approximation of the signed dihedral angle in the tetrahedron pqrs of edge pq . More... | |
Angle CGAL::angle | ( | const CGAL::Point_2< Kernel > & | p, |
const CGAL::Point_2< Kernel > & | q, | ||
const CGAL::Point_2< Kernel > & | r | ||
) |
#include <CGAL/Kernel/global_functions.h>
returns CGAL::OBTUSE
, CGAL::RIGHT
or CGAL::ACUTE
depending on the angle formed by the three points p
, q
, r
(q
being the vertex of the angle).
The returned value is the same as angle(p - q, r - q)
.
Angle CGAL::angle | ( | const CGAL::Point_2< Kernel > & | p, |
const CGAL::Point_2< Kernel > & | q, | ||
const CGAL::Point_2< Kernel > & | r, | ||
const CGAL::Point_2< Kernel > & | s | ||
) |
#include <CGAL/Kernel/global_functions.h>
returns CGAL::OBTUSE
, CGAL::RIGHT
or CGAL::ACUTE
depending on the angle formed by the two vectors pq
, rs
.
The returned value is the same as angle(q - p, s - r)
.
Angle CGAL::angle | ( | const CGAL::Point_3< Kernel > & | p, |
const CGAL::Point_3< Kernel > & | q, | ||
const CGAL::Point_3< Kernel > & | r, | ||
const CGAL::Point_3< Kernel > & | s | ||
) |
#include <CGAL/Kernel/global_functions.h>
returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq
, rs
.
The returned value is the same as angle(q - p, s - r)
.
Kernel::FT CGAL::approximate_dihedral_angle | ( | const CGAL::Point_3< Kernel > & | p, |
const CGAL::Point_3< Kernel > & | q, | ||
const CGAL::Point_3< Kernel > & | r, | ||
const CGAL::Point_3< Kernel > & | s | ||
) |
#include <CGAL/Kernel/global_functions.h>
returns an approximation of the signed dihedral angle in the tetrahedron pqrs
of edge pq
.
The sign is negative if orientation(p,q,r,s)
is CGAL::NEGATIVE
and positive otherwise. The angle is given in degrees.
p,q,r
and p,q,s
are not collinear.