\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.2 - 2D and 3D Linear Geometry Kernel

See also
CGAL::side_of_oriented_sphere()

Functions

template<typename Kernel >
Bounded_side CGAL::side_of_bounded_sphere (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const CGAL::Point_3< Kernel > &t)
 returns the relative position of point t to the sphere defined by p, q, r, and s. More...
 
template<typename Kernel >
Bounded_side CGAL::side_of_bounded_sphere (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &t)
 returns the position of the point t relative to the sphere passing through p, q, and r and whose center is in the plane defined by these three points.
 
template<typename Kernel >
Bounded_side CGAL::side_of_bounded_sphere (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &t)
 returns the position of the point t relative to the sphere that has pq as its diameter.
 

Function Documentation

◆ side_of_bounded_sphere()

template<typename Kernel >
Bounded_side CGAL::side_of_bounded_sphere ( const CGAL::Point_3< Kernel > &  p,
const CGAL::Point_3< Kernel > &  q,
const CGAL::Point_3< Kernel > &  r,
const CGAL::Point_3< Kernel > &  s,
const CGAL::Point_3< Kernel > &  t 
)

#include <CGAL/Kernel/global_functions.h>

returns the relative position of point t to the sphere defined by p, q, r, and s.

The order of the points p, q, r, and s does not matter.

Precondition
p, q, r and s are not coplanar.