\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13.2 - dD Geometry Kernel
Kernel_d::Side_of_oriented_sphere_d Concept Reference

Definition

Operations

A model of this concept must provide:

template<class ForwardIterator >
Oriented_side operator() (ForwardIterator first, ForwardIterator last, const Kernel_d::Point_d &p)
 returns the relative position of point p to the oriented sphere defined by the points in A = tuple [first,last) The order of the points in \( A\) is important, since it determines the orientation of the implicitly constructed sphere. More...
 

Member Function Documentation

◆ operator()()

template<class ForwardIterator >
Oriented_side Kernel_d::Side_of_oriented_sphere_d::operator() ( ForwardIterator  first,
ForwardIterator  last,
const Kernel_d::Point_d p 
)

returns the relative position of point p to the oriented sphere defined by the points in A = tuple [first,last) The order of the points in \( A\) is important, since it determines the orientation of the implicitly constructed sphere.

If the points in \( A\) are positively oriented, the positive side is the bounded interior of the sphere.

Precondition
A contains \( d+1\) points in \( d\)-space.
Template Parameters
ForwardIteratorhas Kernel_d::Point_d as value type.