\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - Bounding Volumes
Min_annulus_d/min_annulus_d_fast_exact.cpp
// computes the smallest enclosing annulus of two point
// sets on nested squares in R^2, using double
// as input type and some internal EXACT floating point type;
// the fast type double is also safely used for many of the
// internal computations
#include <CGAL/Min_annulus_d.h>
#include <CGAL/Min_sphere_annulus_d_traits_2.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Exact_integer.h>
typedef CGAL::Exact_integer ET;
#include <iostream>
#include <cassert>
// use an inexact kernel...
typedef K::Point_2 Point;
// ... and the EXACT traits class based on the inexcat kernel
typedef CGAL::Min_annulus_d<Traits> Min_annulus;
int main()
{
// points on the squares [-1,1]^2 and [-2,2]^2
Point P[8] = { Point(-1,-1), Point(-1,1), Point(1,-1), Point(1,1),
Point(-2,-2), Point(-2,2), Point(2,-2), Point(2,2)};
Min_annulus ma(P, P+8);
assert (ma.is_valid());
// get center of annulus
Min_annulus::Coordinate_iterator coord_it;
std::cout << "center:"; // homogeneous point, (0,0,1)
for (coord_it = ma.center_coordinates_begin();
coord_it != ma.center_coordinates_end();
++coord_it)
std::cout << " " << CGAL::to_double(*coord_it);
std::cout << std::endl;
// get inner squared radius, 1^2+1^2 = 2
std::cout << "Inner squared radius: " <<
CGAL::to_double(ma.squared_inner_radius_numerator()) /
CGAL::to_double(ma.squared_radii_denominator()) << std::endl;
// get outer squared radius, 2^2+2^2 = 8
std::cout << "Outer squared radius: " <<
CGAL::to_double(ma.squared_outer_radius_numerator()) /
CGAL::to_double(ma.squared_radii_denominator()) << std::endl;
return 0;
}