\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 2D Circular Geometry Kernel
CircularKernel::HasOn_2 Concept Reference

Definition

To test whether a point lies on a curve.

Refines:
Kernel::HasOn_2

Operations

A model of this concept must provide:

bool operator() (const CircularKernel::Line_2 &l, const CircularKernel::Circular_arc_point_2 &p)
 For a line.
 
bool operator() (const CircularKernel::Circle_2 &c, const CircularKernel::Circular_arc_point_2 &p)
 For a circle.
 
bool operator() (const CircularKernel::Line_arc_2 &l, const CircularKernel::Circular_arc_point_2 &p)
 For a line arc.
 
bool operator() (const CircularKernel::Circular_arc_2 &c, const CircularKernel::Circular_arc_point_2 &p)
 For a circular arc.