\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 2D Circular Geometry Kernel
CircularKernel::Split_2 Concept Reference

Definition

Operations

A model of this concept must provide:

void operator() (const CircularKernel::Circular_arc_2 &a, const CircularKernel::Circular_arc_point_2 &p, CircularKernel::Circular_arc_2 &a1, CircularKernel::Circular_arc_2 &a2)
 Splits arc a at point p, which creates arcs a1 and a2. More...
 
void operator() (const CircularKernel::Line_arc_2 &l, const CircularKernel::Circular_arc_point_2 &p, CircularKernel::Line_arc_2 &l1, CircularKernel::Line_arc_2 &l2)
 Same for a line arc.
 

Member Function Documentation

◆ operator()()

void CircularKernel::Split_2::operator() ( const CircularKernel::Circular_arc_2 a,
const CircularKernel::Circular_arc_point_2 p,
CircularKernel::Circular_arc_2 a1,
CircularKernel::Circular_arc_2 a2 
)

Splits arc a at point p, which creates arcs a1 and a2.

Precondition
The point lies on the input arc.