\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 3D Spherical Geometry Kernel
SphericalKernel::CompareZAtTheta_3 Concept Reference

Definition

Operations

An object of this type must provide:

Comparison_result operator() (const SphericalKernel::Circular_arc_3 &a0, const SphericalKernel::Circular_arc_3 &a1, const SphericalKernel::Vector_3 &m)
 compares the \( z\)-coordinates of the two intersections points of a0 and a1 with the meridian defined by m (see Section Spherical Kernel Objects). More...
 
Comparison_result operator() (const SphericalKernel::Circular_arc_point_3 &p, const SphericalKernel::Circular_arc_3 &a)
 given a meridian anchored at the poles of the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object, and passing through point p, compares the \( z\)-coordinate of point p and that of the intersection of the meridian with a. More...
 

Member Function Documentation

◆ operator()() [1/2]

Comparison_result SphericalKernel::CompareZAtTheta_3::operator() ( const SphericalKernel::Circular_arc_3 a0,
const SphericalKernel::Circular_arc_3 a1,
const SphericalKernel::Vector_3 m 
)

compares the \( z\)-coordinates of the two intersections points of a0 and a1 with the meridian defined by m (see Section Spherical Kernel Objects).

Precondition
a0 and a1 lie on the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object. m \( \neq(0,0,0)\) and the \( z\)-coordinate of m is \( 0\). Arcs a0 and a1 are \( \theta\)-monotone and both intersected by the meridian defined by m(see Section Spherical Kernel Objects).

◆ operator()() [2/2]

Comparison_result SphericalKernel::CompareZAtTheta_3::operator() ( const SphericalKernel::Circular_arc_point_3 p,
const SphericalKernel::Circular_arc_3 a 
)

given a meridian anchored at the poles of the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object, and passing through point p, compares the \( z\)-coordinate of point p and that of the intersection of the meridian with a.

Precondition
a and p lie on the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object, arc a is \( \theta\)-monotone and the meridian passing through p intersects arc a.