\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 3D Spherical Geometry Kernel
SphericalKernel::Equal_3 Concept Reference

Definition

Operations

An object of this type must provide in addition:

bool operator() (const SphericalKernel::Circular_arc_point_3 &p0, const SphericalKernel::Circular_arc_point_3 &p1)
 For two points.
 
bool operator() (const SphericalKernel::Circular_arc_3 &a0, const SphericalKernel::Circular_arc_3 &a1)
 For two arcs. More...
 
bool operator() (const SphericalKernel::Line_arc_3 &a0, const SphericalKernel::Line_arc_3 &a1)
 For two segments. More...
 

Member Function Documentation

◆ operator()() [1/2]

bool SphericalKernel::Equal_3::operator() ( const SphericalKernel::Circular_arc_3 a0,
const SphericalKernel::Circular_arc_3 a1 
)

For two arcs.

Two arcs are equal, iff their non-oriented supporting planes are equal, and the centers and squared radii of their respective supporting circles are equal, and their sources and targets are equal.

◆ operator()() [2/2]

bool SphericalKernel::Equal_3::operator() ( const SphericalKernel::Line_arc_3 a0,
const SphericalKernel::Line_arc_3 a1 
)

For two segments.

Two segments are equal, iff their non-oriented supporting lines are equal (i.e. they define the same set of points), and their endpoints are the same.