\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 3D Spherical Geometry Kernel
SphericalKernel::IsThetaMonotone_3 Concept Reference

Definition

Operations

An object of this type must provide:

bool operator() (const SphericalKernel::Circular_arc_3 &a)
 Tests whether the arc a is \( \theta\)-monotone, i.e. the intersection of any meridian anchored at the poles of the context sphere used by the function SphericalKernel::is_theta_monotone_3_object and the arc a is reduced to at most one point in general, and two points if a pole of that sphere is an endpoint of a. More...
 

Member Function Documentation

◆ operator()()

bool SphericalKernel::IsThetaMonotone_3::operator() ( const SphericalKernel::Circular_arc_3 a)

Tests whether the arc a is \( \theta\)-monotone, i.e. the intersection of any meridian anchored at the poles of the context sphere used by the function SphericalKernel::is_theta_monotone_3_object and the arc a is reduced to at most one point in general, and two points if a pole of that sphere is an endpoint of a.

Note that a bipolar circle has no such arcs.

Precondition
a lies on the context sphere used by the function SphericalKernel::is_theta_monotone_3_object, and the supporting circle of a is not bipolar.