\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - Inscribed Areas
LargestEmptyIsoRectangleTraits_2 Concept Reference

Definition

The concept LargestEmptyIsoRectangleTraits_2 describes the set of requirements to be fulfilled by any class used to instantiate the template parameter of the class Largest_empty_iso_rectangle_2<T>. This concept provides the types of the geometric primitives used in this class and some function object types for the required predicates on those primitives.

Has Models:

CGAL::Cartesian

CGAL::Homogeneous

See also
CGAL::Largest_empty_iso_rectangle_2<Traits>

Types

typedef unspecified_type Point_2
 The point type.
 
typedef unspecified_type Iso_rectangle_2
 The iso rectangle type.
 
typedef unspecified_type Compare_x_2
 Predicate object. More...
 
typedef unspecified_type Compare_y_2
 Predicate object. More...
 
typedef unspecified_type Less_x_2
 Predicate object. More...
 
typedef unspecified_type Less_y_2
 Predicate object. More...
 

Creation

Only a default constructor, copy constructor and an assignement operator are required.

Note that further constructors can be provided.

 LargestEmptyIsoRectangleTraits_2 ()
 Default constructor.
 
 LargestEmptyIsoRectangleTraits_2 (LargestEmptyIsoRectangleTraits_2)
 Copy constructor.
 
LargestEmptyIsoRectangleTraits_2 operator= (LargestEmptyIsoRectangleTraits_2 gtr)
 Assignment operator.
 

Predicate functions

The following functions give access to the predicate and constructor objects.

Compare_x_2 compare_x_2_object ()
 
Compare_y_2 compare_y_2_object ()
 
Less_x_2 less_x_2_object ()
 
Less_y_2 less_y_2_object ()
 

Member Typedef Documentation

◆ Compare_x_2

Predicate object.

Must provide the operator Comparison_result operator()(Point_2 p, Point_2 q) which returns SMALLER, EQUAL or LARGER according ding to the \( x\)-ordering of points p and q.

◆ Compare_y_2

Predicate object.

Must provide the operator Comparison_result operator()(Point_2 p, Point_2 q) which returns SMALLER, EQUAL or LARGER according to the \( y\)-ordering of points p and q.

◆ Less_x_2

Predicate object.

Must provide the operator bool operator()(Point_2 p, Point_2 q) which returns whether p is less than q according to their \( x\)-ordering.

◆ Less_y_2

Predicate object.

Must provide the operator bool operator()(Point_2 p, Point_2 q) which returns whether p is less than q according to their \( y\)-ordering.