\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 2D and 3D Linear Geometry Kernel
Kernel::ComputeSquaredRadiusSmallestOrthogonalSphere_3 Concept Reference

Definition

See also
CGAL::Weighted_point_3<Kernel>
ComputePowerProduct_3 for the definition of of orthogonality for power distances.
Refines:
AdaptableFunctor

Operations

A model of this concept must provide:

Kernel::FT operator() (const Kernel::Weighted_point_3 &pw, const Kernel::Weighted_point_3 &qw, const Kernel::Weighted_point_3 &rw, const Kernel::Weighted_point_3 &sw) const
 returns the squared radius of the smallest sphere orthogonal to the argument(s).
 
Kernel::FT operator() (const Kernel::Weighted_point_3 &pw, const Kernel::Weighted_point_3 &qw, const Kernel::Weighted_point_3 &rw) const
 
Kernel::FT operator() (const Kernel::Weighted_point_3 &pw, const Kernel::Weighted_point_3 &qw) const
 
Kernel::FT operator() (const Kernel::Weighted_point_3 &pw) const