\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 2D and 3D Linear Geometry Kernel
Kernel::ConstructIsoCuboid_3 Concept Reference

Definition

Refines:
AdaptableFunctor (with two arguments)
See also
CGAL::Iso_cuboid_3<Kernel>

Operations

A model of this concept must provide:

Kernel::Iso_cuboid_3 operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q)
 introduces an iso-oriented cuboid with diagonal opposite vertices p and q such that p is the lexicographically smallest point in the cuboid.
 
Kernel::Iso_cuboid_3 operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, int)
 introduces an iso-oriented cuboid with diagonal opposite vertices p and q. More...
 
Kernel::Iso_cuboid_3 operator() (const Kernel::Point_3 &left, const Kernel::Point_3 &right, const Kernel::Point_3 &bottom, const Kernel::Point_3 &top, const Kernel::Point_3 &far, const Kernel::Point_3 &close)
 introduces an iso-oriented cuboid fo whose minimal \( x\) coordinate is the one of left, the maximal \( x\) coordinate is the one of right, the minimal \( y\) coordinate is the one of bottom, the maximal \( y\) coordinate is the one of top, the minimal \( z\) coordinate is the one of far, the maximal \( z\) coordinate is the one of close.
 

Member Function Documentation

◆ operator()()

Kernel::Iso_cuboid_3 Kernel::ConstructIsoCuboid_3::operator() ( const Kernel::Point_3 p,
const Kernel::Point_3 q,
int   
)

introduces an iso-oriented cuboid with diagonal opposite vertices p and q.

The int argument value is only used to distinguish the two overloaded functions.

Precondition
p.x()<=q.x(), p.y()<=q.y() and p.z()<=q.z().