\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 2D and 3D Linear Geometry Kernel
Kernel::PowerSideOfOrientedPowerCircle_2 Concept Reference

Definition

Refines:
AdaptableFunctor (with four arguments)
See also
CGAL::Weighted_point_2<Kernel>
ComputePowerProduct_2 for the definition of power distance.
PowerSideOfBoundedPowerCircle_2

Operations

A model of this concept must provide:

Oriented_side operator() (const Kernel::Weighted_point_2 &p, const Kernel::Weighted_point_2 &q, const Kernel::Weighted_point_2 &r, const Kernel::Weighted_point_2 &s)
 returns the relative position of point s to the oriented power circle defined by p, q, and r. More...
 

Member Function Documentation

◆ operator()()

Oriented_side Kernel::PowerSideOfOrientedPowerCircle_2::operator() ( const Kernel::Weighted_point_2 p,
const Kernel::Weighted_point_2 q,
const Kernel::Weighted_point_2 r,
const Kernel::Weighted_point_2 s 
)

returns the relative position of point s to the oriented power circle defined by p, q, and r.

The order of the points p, q and r is important, since it determines the orientation of the implicitly constructed power circle.

Precondition
the bare points corresponding to p, q, r are not collinear.