\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 3D Periodic Triangulations
Periodic_3TriangulationDSCellBase_3 Concept Reference

Definition

A refinement of the concept TriangulationDSCellBase_3 which adds an API for offsets.

At the base level (see Sections Software Design and Software Design), a cell stores handles to its four vertices and to its four neighbor cells. The vertices and neighbors are indexed 0, 1, 2 and 3. Neighbor i lies opposite to vertex i.

For periodic triangulations, the cell base class needs to additionally store an offset for each vertex. Only the last three bits of each integer are required to be stored. The remaining part does not contain any information.

Refines:
TriangulationDSCellBase_3
Has Models:
CGAL::Periodic_3_triangulation_ds_cell_base_3
See also
TriangulationDataStructure_3
TriangulationDSCellBase_3
Periodic_3TriangulationDSVertexBase_3

Access Functions

int offset (int i) const
 Returns the offset of vertex i. More...
 

Setting

void set_offsets (int off0, int off1, int off2, int off3)
 Sets the vertex offsets according to off0 to off3.
 

Member Function Documentation

◆ offset()

int Periodic_3TriangulationDSCellBase_3::offset ( int  i) const

Returns the offset of vertex i.

Precondition
\( i \in\{0, 1, 2, 3\}\).