\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.13 - 3D Triangulations
DelaunayTriangulationCellBase_3 Concept Reference

Definition

The base cell of a Delaunay triangulation must be a model of the concept DelaunayTriangulationCellBase_3, which refines the concept TriangulationCellBase_3 by adding in the cell an operator that computes its circumcenter.

Refines:
TriangulationCellBase_3
Has Models:

CGAL::Delaunay_triangulation_cell_base_3

CGAL::Delaunay_triangulation_cell_base_with_circumcenter_3

See also
DelaunayTriangulationTraits_3

Types

typedef DelaunayTriangulationTraits_3::Point_3 Point
 

Access functions

const Pointcircumcenter (DelaunayTriangulationTraits_3 &gt=DelaunayTriangulationTraits_3()) const
 Returns the circumcenter of the cell. More...
 

Member Function Documentation

◆ circumcenter()

const Point& DelaunayTriangulationCellBase_3::circumcenter ( DelaunayTriangulationTraits_3 gt = DelaunayTriangulationTraits_3()) const

Returns the circumcenter of the cell.

DelaunayTriangulationTraits_3 is the geometric traits class of the triangulation.

This operator is required only when the dual functions are called.