\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.2 - Algebraic Foundations
ExplicitInteroperable Concept Reference

Definition

Two types A and B are a model of the ExplicitInteroperable concept, if it is possible to derive a superior type for A and B, such that both types are embeddable into this type. This type is CGAL::Coercion_traits<A,B>::Type.

In this case CGAL::Coercion_traits<A,B>::Are_explicit_interoperable is Tag_true.

A and B are valid argument types for all binary functors in CGAL::Algebraic_structure_traits<Type> and CGAL::Real_embeddable_traits<Type>. This is also the case for the respective global functions.

See also
CGAL::Coercion_traits<A,B>
ImplicitInteroperable
AlgebraicStructureTraits
RealEmbeddableTraits